Phase Stability of Rare-Earth Based Mixed Oxides in Nano-Regime: Role of Synthesis

Article Preview

Abstract:

Synthesis plays an important role in the phase stabilization of unusual compounds. Of late, preparation of metastable compounds has gained a tremendous momentum due to unusual properties exhibited by them. In this article, we will discuss how by mere change in certain parameters of the reaction a metastable phase can be isolated using a soft chemical route. Surface energy induced stabilization are also observed wherein enhanced stability of the mixed oxides are observed in the nano-regime of the compound.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-152

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Adachi, N. Imanaka: Chem. Rev. Vol. 98 (1998), p.1479.

Google Scholar

[2] J.P. Coutures, R. Verges, M. Foex : Rev. Int. Hautes Temp. Refract. Vol. 12 (1975), p.181.

Google Scholar

[3] W.C. Koehler, E.O. Wollan : Acta. Crystallogr. Vol. 6 (1953), p.741.

Google Scholar

[4] R.M. Douglass, E. Staritzky: Anal Chem. Vol. 28 (1966), p.552.

Google Scholar

[5] P. Aldebert, J.P. Traverse: Mater. Res. Bull. Vol. 14 (1979), p.303.

Google Scholar

[6] M. Yvars: Ann. Chimie Vol. 10(1985), p.17.

Google Scholar

[7] B. Das, S. Subramanium, M.R. Melloch: Semicond. Sci. Technol. Vol. 8 (1993), p.1347.

Google Scholar

[8] G. Cao, Nanostructures and Nanomaterials: Synthesis, properties and applications, Imperial College Press, London (2004).

Google Scholar

[9] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos: Mater. Lett. Vol. 10 (1990), p.6.

Google Scholar

[10] R.D. Purohit, A.K. Tyagi: J. Mater. Chem. Vol. 2 (2002), p.312.

Google Scholar

[11] J. Tsay, T. Fang: J. Amer. Ceram. Soc. Vol. 82 (1999), p.1409.

Google Scholar

[12] K.V. Damodaran, U. Selvaraj, K.J. Rao: Mater. Res. Bull. Vol. 23 (1988), p.151.

Google Scholar

[13] S.R. Jain, K.C. Adiga, V.R. Pai Verneker: Combust. Flame, Vol. 40 (1981), p.71.

Google Scholar

[14] Kirk Othmer, Encyclopedia of Chemical Technology, Vol. 5, John Wiley, New York (1993).

Google Scholar

[15] Kirk-Othmer, J.I. Kroshwitz, M.H. Grant, Encyclopedia of Chemical Technology, John Wiley & Sons, New York (1994).

Google Scholar

[16] S.V. Chavan, A.K. Tyagi: J. Mater. Res. Vol. 19 (2004), p.3181.

Google Scholar

[17] R.H. Perry, C.H. Chilton, Chemical Engineers Handbook, 5th ed., McGraw-Hill, New York (1975).

Google Scholar

[18] Ed. J.A. Dean, Lange's Handbook of Chemistry, 12 th ed., McGraw-Hill, New York (1979).

Google Scholar

[19] R.H. Schumm, D.D. Wagman, S. Bailey, W.H. Evans, V. B. Parker, Selected values of Chemical Thermodynamic Properties, National Bureau of Standards, Washington D. C. (1973).

Google Scholar

[20] J. B. Goodenough, J. M. Longo, Landolt-Bornstein, New Series, III/4a, Springer Verlag, Berlin (1970).

Google Scholar

[21] H. M. Christen, G. E. Jellison, I. Ohkubo, S. Huang, M. E. Reeves, E. Cicerrella, J. L. Freeouf, Y. Jia and D. G. Schlom: Appl. Phys. Lett., Vol. 88 (2006), p.262906.

DOI: 10.1063/1.2213931

Google Scholar

[22] J. Schubert, O. Trithaveesak, A. Petraru, C. L. Jia, R. Uecker, P. Reiche, and D. G. Schlom: Appl. Phys. Lett. Vol. 82 (2003), p.3460.

DOI: 10.1063/1.1575935

Google Scholar

[23] J. E. Greedan, and K. Seto: Mater. Res. Bull. Vol. 16 (1981), p.1479.

Google Scholar

[24] R. Shukla, A. Arya, and A. K. Tyagi: Inorg. Chem. Vol. 49 (2010), p.1152.

Google Scholar

[25] V. Bedekar, R. Shukla, A. K. Tyagi: Nanotech. Vol. 18 (2007), p.155706.

Google Scholar

[26] V. Grover, A. Banerji, P. Sengupta, and A. K. Tyagi: J. Solid State Chem. Vol. 181 (2008), p. (1930).

Google Scholar

[27] P. Li, I. Chen, J. E. Penner-Hahn, and T. Tien: J. Am. Ceram. Soc. Vol. 74 (1991), p.958.

Google Scholar

[28] V. Bedekar, and A. K. Tyagi: J. Nanosci. Nanotechnol. Vol. 7 (2007), p.3214.

Google Scholar

[29] G. L. Brennecka, C. M. Parish, B. A. Tuttle, L. N. Brewer, and M. A Rodriguez: Adv. Mater. Vol. 20 (2008), p.1407.

Google Scholar

[30] B. P. Mandal, V. Grover, M. Roy, and A. K. Tyagi: J. Am. Ceram. Soc. Vol. 90 (2007), p.2961.

Google Scholar

[31] B. P. Mandal, M. Roy, V. Grover and A. K. Tyagi: J. Appl. Phys. Vol. 103 (2008), p.033506.

Google Scholar

[32] E. Granado, N. O. Moreno, A. Garcý´a, J. A. Sanjurjo, C. Rettori, I. Torriani, S. B. Oseroff, J. J. Neumeier, K. J. McClellan, S. -W. Cheong and Y. Tokura: Phys. Rev. B Vol. 58 (1998), p.11435.

DOI: 10.4028/www.scientific.net/msf.302-303.134

Google Scholar

[33] C.R. Serrao, A.K. Kundu, S.B. Krupanidhi, U.V. Waghmare, C.N.R. Rao: Phys. Rev. B Vol. 72 (2005), p.220101.

Google Scholar

[34] R. Saez-Puche, E. Jimenez, J. Isasi, M.T. Fernandez-Diaz, J.L. Garcia-Munoz: J. Solid State Chem. Vol. 171 (2003), p.161.

Google Scholar

[35] E. Jimenez, J. Isasi, R. Saez-Puche: J. Alloys Compds. Vol. 115 (2001), p.323.

Google Scholar

[36] P.A. Swarthmore, Powder Diffraction File, Card No. 340365, Joint Committee on Powder Diffraction Standards, (1989).

Google Scholar

[37] E.M. Levin, H.F. McMurdie: Phase diagrams for ceramists, Ed. M.K. Reser, American Ceramic Society, Columbus, USA (1975).

Google Scholar

[38] T. Tachiwaki, Y. Kunifusa, M. Yoshinaka, K. Hirota, O. Yamaguchi: Int. J. Inorg. Mater. Vol. 3 (2001), p.107.

Google Scholar

[39] A. Chakraborty, P.S. Devi, S. Roy, H.S. Maiti: J. Mater. Res. Vol. 9 (1994), p.986.

Google Scholar

[40] K. Zupan, S. Pejovnik, J. Macek: Acta Chim. Slov. Vol. 48 (2001), p.137.

Google Scholar

[41] E. Climent-Pascual, J. Romero de Paz, J.M. Gallardo-Amores, R. Saez-Puche: Solid State Sci. Vol. 9 (2007), p.574.

DOI: 10.1016/j.solidstatesciences.2007.03.003

Google Scholar

[42] R. Shukla, V. Bedekar, S. M. Yusuf, P. Srinivasu, A. Vinu and A. K. Tyagi: J. Nanosci. Nanotechnol. Vol. 9 (2009), p.501.

Google Scholar