[1]
T.V. Hughes and C.R. Chambers, U.S. Patent 405, 480 (1889).
Google Scholar
[2]
R.S. Wagner and W.C. Ellis, Applied Physics Letters, 4 (1964) 89.
Google Scholar
[3]
H. Adhikari, A.F. Marshall, I.A. Goldthorpe, C.E.D. Chidsey and P.C. McIntyre, ACS Nano, 1 (2007) 415.
Google Scholar
[4]
C.N.R. Rao, F.L. Deepak, G. Gundiah and A. Govindaraj, Progress in Solid State Chemistry, 31 5.
Google Scholar
[5]
T. Tanaka and S. Hara, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 92 (2001) 467.
Google Scholar
[6]
A.S. Shirinyan, A.M. Gusak and M. Wautelet, 53 (2005) 5025.
Google Scholar
[7]
I. Sa, B. -M. Lee, C. -J. Kim, M. -H. Jo and B. -J. Lee, Calphad, 32 (2008) 669.
Google Scholar
[8]
Y. Eichhammer, J. Roeck, N. Moelans, F. Iacopi, B. Blanpain and M. Heyns, Archives of Metallurgy and Materials, 53 (2008) 1133.
Google Scholar
[9]
E.J. Schwalbach and P.W. Voorhees, Nano Letters, 8 (2008) 3739.
Google Scholar
[10]
E. Sutter and P. Sutter, Nano Letters, 8 (2008) 411.
Google Scholar
[11]
A. Hemant, C.M. Paul, F.M. Ann and E.D.C. Christopher, Journal of Applied Physics, 102 (2007) 094311.
Google Scholar
[12]
B. Sundman, B. Jansson and J. -O. Andersson, Calphad, 9 (1985) 153.
Google Scholar
[13]
R.A. Swalin, John Wiley & Sons, New York, N. Y, (1962).
Google Scholar
[14]
J.A.V. Butler, Proceedings of the Royal Society of London. Series A, 135 (1932) 348.
Google Scholar
[15]
K. Yeum, R. Speiser and D. Poirier, Metallurgical and Materials Transactions B, 20 (1989) 693.
Google Scholar
[16]
D. Hourlier-Bahloul and P. Perrot, Comptes Rendus Chimie, 10 (2007) 658.
DOI: 10.1016/j.crci.2007.02.003
Google Scholar
[17]
A.T. Dinsdale, Calphad, 15 317. Table I: Thermodynamic data of the Au-Si system G°(Au, L) - G°(Au, FCC) = 12 552 - 9. 385 866 T.
Google Scholar
[17]
G°(Si, L) - G°(Si, diamond) = 50 696. 36 - 30. 099 439 T + 2. 093 1 × 10-21 T 7.
Google Scholar
[17]
G°(Ge, L) - G°(Ge, diamond) = 37141. 49 - 30. 687044 T + 8. 5663 × 10-21 T 7 GL xs = x (1 - x ) ∑∑∑∑ Li (1 - 2 x ) i where x is the mole fraction of Si in the liquid alloy L0 = - 23 863. 9 - 16. 234 38 T L1 = - 20 529. 55 - 6. 039 58 T L2 = - 8 170. 5 - 4. 273 2 T L3 = - 33 138. 25 + 26. 566 65 T.
Google Scholar
[5]
GL xs = x (1 - x) ∑∑∑∑ Li (1 - 2 x ) i where x is the mole fraction of Ge in the liquid alloy L0 = - 20050 - 8. 365 T L1 = - 12950 - 2. 015 T L2 = - 13. 52 T Table II: Molar volume V and surface tension σσσσ of Au, Si and Ge Element V / m3. mol −1 σ / J. m −2 <Au>, fcc 1. 0206 ×10 − 5 exp.
Google Scholar
[4]
. 23 ×10 − 5 (T − 293)] 1. 423 − 1. 9 × 10 − 3 (T − 1337) (Au), liq 1. 1345 × 10 − 5 exp.
Google Scholar
[8]
. 0 ×10 − 5(T − 1337)] 1. 138 − 1. 9 × 10 − 3 (T − 1337) <Ge>, dia 1. 3648 ×10 − 5 exp.
Google Scholar