Anomaly in Thermal Stability of Nanostructured Materials

Article Preview

Abstract:

Understanding of the melting temperature of nanostructures is beneficial to exploit phase transitions and their applications at elevated temperatures. The melting temperature of nanostructured materials depends on particle size, shape and dimensionality and has been well established both experimentally and theoretically. The large surface-to-volume ratio is the key for the low melting temperature of nanostructured materials. The melting temperature of almost free nanoparticles decreases with decreasing size although there are anomalies for some cases. Superheating has been reported for some embedded nanoparticles. Local maxima and minima in the melting temperature have been reported for particles with fewer atoms. Another quantity that is influenced by large surface-to-volume ratio and related to the thermal stability, is the vapour pressure. The vapour pressure of nanoparticles is shown to be enhanced for smaller particles. In this article, we have discussed the anomaly in thermal stability of nanostructured materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-30

Citation:

Online since:

June 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. H. Qi and M. P. Wang J. Mat. Sci. Lett. Vol. 21 (2002), p.1743.

Google Scholar

[2] K. K. Nanda, S. N. Sahu and S. N. Behera Phys. Rev. A Vol. 66 (2002), p.013208.

Google Scholar

[3] K. K. Nanda, Appl. Phys. Lett. Vol. 87, (2005), p.021909.

Google Scholar

[4] K. K. Nanda, Chem. Phys. Lett. Vol. 419 (2006), p.195.

Google Scholar

[5] S. C. Vanithakumari and K. K. Nanda, J. Phys. Chem. B Vol. 110 (2006), p.1033.

Google Scholar

[6] S. C. Vanithakumari and K. K. Nanda, Phys. Lett. A Vol. 372 (2008), p.6930.

Google Scholar

[7] W.H. Qi, M.P. Wang, G.Y. Xu, Chem. Phys. Lett. Vol. 372 (2004), p.632.

Google Scholar

[8] D. Xie, M.P. Wang, W.H. Qi, J. Phys.: Condens. Matter Vol. 16 (2004), p. L401.

Google Scholar

[9] W.H. Qi, M.P. Wang, Mater. Chem. Phys. Vol. 88 (2004), p.280.

Google Scholar

[10] W.H. Qi, M.P. Wang, J. Mater. Sci. Lett. Vol. 21 (2002), p.1743.

Google Scholar

[11] W.H. Qi, M.P. Wang, W.Y. Hu, J. Phys. D: Appl. Phys. Vol. 38 (2005), p.1429.

Google Scholar

[12] Q. Jiang, J.C. Li, B.Q. Chi, Chem. Phys. Lett. Vol. 366 (2002), p.551.

Google Scholar

[13] C.Q. Sun, Y. Wang, B.K. Tay, S. Li, H. Huang, Y.B. Zhang, J. Phys. Chem. B Vo. 106 (2002), p.10701.

Google Scholar

[14] C.Q. Sun, C.M. Li, H.L. Bai, E.Y. Jiang, Nanotechnology Vol. 16 (2005), p.1290.

Google Scholar

[15] C.Q. Sun, Y. Shi, C.M. Li, S. Li, T.C. Au Yeung, Phys. Rev. B Vol. 73 (2006), p.075408.

Google Scholar

[16] D. Tomanek, S. Mukherjee, K.H. Bennemann, Phys. Rev. B Vol. 28 (1983), p.665.

Google Scholar

[17] C. Bre´chignac, H. Busch, Ph. Cahuzac, and J. Leygnier, J. Chem. Phys. Vol. 101 (1994), p.6992.

Google Scholar

[18] H. K. Kim, S. H. Huh, J. W. Park, J. W. Jeong, and G. H. Lee, Chem. Phys. Lett. Vol. 354 (2002), p.165.

Google Scholar

[19] C. R. M. Wronski, Br. J. Appl. Phys. Vol. 18 (1967), p.1731.

Google Scholar

[20] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, Phys. Rev. Lett. Vol. 77 (1996), p.99.

Google Scholar

[21] Y. Oshima and K. Takayanagi, Z. Phys. D Vol. 27 (1993), p.287.

Google Scholar

[22] T. Bachels, H. -J. Gunterodt and R. Schafer, Phys. Rev. Lett. Vol. 85 (2000), p.1250.

Google Scholar

[23] M. Takagi, J. Phys. Soc. Jap. Vol. 9 (1954), p.359.

Google Scholar

[24] L. S. Palatnik and Yu. F. Konnik, Phys. Metals Metal. Vol. 9 (1960), p.48.

Google Scholar

[25] J. F. Pocza, A. Barna and P. B. Barna, J. Vacuum. Sci. & Technol. Vol. 6 (1969), p.472.

Google Scholar

[26] R. P. Berman and A. E. Curzon, Can. J. Phys. Vol. 52 (1974), p.923.

Google Scholar

[27] B. T. Boiko, A. T. Pugachev and V. M. Bratsykhin, Sov. Phys. Solid State Vol. 10 (1969), p.2832.

Google Scholar

[28] J. R. Sambles, Proc. R. Soc. Lond. A Vol. 324 (1971), p.339.

Google Scholar

[29] T. Ben-David, Y. Lereah, G. Deutscher, R. Kofman and P. Cheyssac, Phil. Mag. A Vol. 71 (1995), p.1135.

Google Scholar

[30] A. N. Goldstein, C. M. Echer, and A. P. Alivisatos, Science Vol. 256 (1992), p.1425.

Google Scholar

[31] A. N. Goldstein, Appl. Phys. A Vol. 62 (1996), p.33.

Google Scholar

[32] T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Phys. Rev. B Vol. 42 (1990), p.8548.

Google Scholar

[33] Ph. Buffat and J-P. Borel, Phys. Rev. A Vol. 13 (1976), p.2287.

Google Scholar

[34] K. Dick, T. Dhanasekaran, Z. Zhang and D. Meisel, J. Am. Chem. Soc. Vol. 124 (2002), p.2312.

Google Scholar

[35] T. P. Martin, U. Naher, H. Schaber, and U. Zimmermann, J. Chem. Phys. Vol. 100 (1994), p.2322.

Google Scholar

[36] E. A. Olson, M. Yu. Efremov, M. Zhang, Z. Zhang, and L. H. Allen, J. Appl. Phys. Vol. 97 (2005), p.034304.

Google Scholar

[37] V. P. Skripov, V. P. Koverda and V. N. Skokov, Phys. Stat. Sol. A Vol. 66 (1981), p.109.

Google Scholar

[38] Y. Lereah, G. Deutscher, P. Cheyssac, R. Kofman, Europhys. Lett. Vol. 12 (1990), p.709.

Google Scholar

[39] R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, H. M. Penisson and A. Bourret, Surf. Sci. Vol. 303 (1994), p.231.

DOI: 10.1016/0039-6028(94)90635-1

Google Scholar

[40] E. Sondergard, R. Kofman, P. Cheyssac, F. Celestini, T. Ben-David and Y. Lereah, Surf. Sci. Vol. 388 (1997), p. L1115.

DOI: 10.1016/s0039-6028(97)00512-8

Google Scholar

[41] M. Zhang, M. Yu Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S. L. Lai, T. Wisleder, J. E. Greene and L. H. Allen, Phys. Rev. B Vol. 62 (2000), p.10548.

DOI: 10.1103/physrevb.62.10548

Google Scholar

[42] R. Kofman, P. Cheyssac, R. Garrigos, Y. Lereah and G. Deutscher, Z. Phys. D Vol. 20 (1991), p.267.

Google Scholar

[43] M. Dippel, A. Maier, V. Gimple, H. Wider, W.E. Evenson, R.L. Rasera, G. Schatz, Phys. Rev. Lett. Vol. 87 (2001), p.095505.

DOI: 10.1103/physrevlett.87.095505

Google Scholar

[44] X. W. Wang, G. T. Fei, K. Zheng, Z. Jin and L. D. Zhang, Appl. Phys. Lett. Vol. 88 (2006), p.173114.

Google Scholar

[45] K. Morishige and K. Kawano, J. Phys. Chem. B Vol. 104 (2000), 2894.

Google Scholar

[46] E. Molz, A. P. Y. Wong, M. H. W. Chan and J. R. Beamish, Phys. Rev. B Vol. 48 (1993), p.5741.

Google Scholar

[47] J. L. Tell and H. J. Maris, Phys. Rev. B Vol. 28 (1983), p.5122.

Google Scholar

[48] F. Cellestini, R. J. -M. Pellenq, P. Bordarier and B. Rousseau, Z. Phys. D Vol. 37 (1996), p.49.

Google Scholar

[49] A. Rytkonen, S. Valkealahti, and M. Manninen, J. Chem. Phys. Vol. 106 (1997), p.1888.

Google Scholar

[50] H. Saka, Y. Nishikawa, and T. Imura, Philos. Mag. A Vol. 57 (1988), p.895.

Google Scholar

[51] H. W. Sheng, K. Lu, and E. Ma, Nanostruct. Mater. Vol. 10 (1998), p.865.

Google Scholar

[52] L. Grabaek, J. Bohr, E. Johnson, A. Johansen, L. Sarholt-Kristensen, and H. H. Andersen, Phys. Rev. Lett. Vol. 64 (1990), p.934.

DOI: 10.1103/physrevlett.64.934

Google Scholar

[53] K. Chattopadhyay and R. Goswami, Prog. Mater. Sci. Vol. 42 (1997), p.287.

Google Scholar

[54] R. Goswami and K. Chattopadhyay, Acta Mater. Vol. 52 (2004), p.5503.

Google Scholar

[55] H. W. Sheng, G. Ren, L. M. Peng, Z. Q. Hu, and K. Lu, Philos Mag. Lett. Vol. 73 (1996), p.179.

Google Scholar

[56] H. W. Sheng, G. Ren, L. M. Peng, Z. Q. Hu, and K. Lu, J. Mater. Res. Vol. 12 (1997), p.119.

Google Scholar

[57] T. Ohashi, K. Kuroda, and H. Saka, Philos. Mag. B Vol. 65 (1992), p.1041.

Google Scholar

[58] F. G. Shi, J. Mater. Res. Vol. 9 (1994), p.1307.

Google Scholar

[59] Q. Jiang, Z. Zhang, and J. C. Li, Chem. Phys. Lett. Vol. 322 (2000), p.549.

Google Scholar

[60] Z. Zhang, Z. C. Li, and Q. Jiang, J. Phys. D Vol. 33 (2000), p.2653.

Google Scholar

[61] L. Zhang, Z. H. Jin, L. H. Zhang, M. L. Sui, and K. Lu, Phys. Rev. Lett. Vol. 85 (2000), p.1484.

Google Scholar

[62] Q. Xu, I. D. Sharp, C. W. Yuan, D. O. Yi, C. Y. Liao, A. M. Glaeser, A. M. Minor, J. W. Beeman, M. C. Ridgway, P. Kluth, J. W. Ager III, D. C. Chrzan, and E. E. Haller, Phys. Rev. Lett. Vol. 97 (2006), p.155701.

DOI: 10.1103/physrevlett.99.079602

Google Scholar

[63] C. J. Rossouw and S. E. Donnelly, Phys. Rev. Lett. Vol. 55 (1985), p.2960.

Google Scholar

[64] J. H. Evans and D. J. Mazey, J. Phys. F Vol. 15 (1985), p. L1.

Google Scholar

[65] K. F. Peters, Y. -W. Chung and J. B. Cohen, Appl. Phys. Lett. Vol. 71 (1997), p.2391.

Google Scholar

[66] B. Pluis, D. Frenkel, J. F. Van der Veen, Surf. Sci. Vol. 239 (1990), p.282.

Google Scholar

[67] B. Pluis, A. W. Denier van der Gon, J. W. M. Frenken and, J. F. van der Veen, Phys. Rev. Lett. Vol. 59 (1987), p.2678.

DOI: 10.1103/physrevlett.59.2678

Google Scholar

[68] A. Hoss, M. Nold, P. von Blackenhagen and O. Moyer, Phys. Rev. B Vol. 45 (1992), p.8714.

Google Scholar

[69] S. G. J. Mochrie, D. M. Zehner, B. M. Ocko and D. Gibbs, Phys. Rev. Lett. Vol. 64 (1990), p.2925.

Google Scholar

[70] P. Carnevali, F. Ercolessi and E. Tosatti, Phys. Rev. B Vol. 36 (1987), p.6701.

Google Scholar

[71] C. Kan, G. Wang, X. Zhu, C. Li and B. Cao, Appl. Phys. Lett. Vol. 88 (2006), p.071904.

Google Scholar

[72] T. S. Rahman, Z. Tian and J. E. Black, Surf. Sci. Vol. 374 (1997), p.9.

Google Scholar

[73] K. K. Nanda, A. Maisels, F. E. Kruis and B. Rellinghaus, Europhys. Lett. Vol. 80 (2007), 56003.

DOI: 10.1209/0295-5075/80/56003

Google Scholar

[74] D. K. Sar, P. Nayak and K. K. Nanda, Phys. Lett. A Vol. 372 (2008), p.4627.

Google Scholar

[75] G. K. Goswami and K. K. Nanda, Appl. Phys. Lett. 91 (2007), p, 196101.

Google Scholar

[76] K. K. Nanda, Pramana: J. Phys. Vol. 72 (2009), p.671.

Google Scholar

[77] Y. -H. Wen, Z. -Z. Zhu, R. Zhu and G. -F. Shao, Physica E Vol. 25 (2004, p.47.

Google Scholar

[78] B. Wang, G. Wang, X. Chen and J. Zhao, Phys. Rev. B Vol. 67 (2003), p.193403.

Google Scholar

[79] Y. Qi, T. Cagin, W. L. Johnson and W. A. Goddard III, J. Chem. Phys. Vol. 115 (2001), p.385 (2001).

Google Scholar

[80] L. Hui, F. Pederiva, B. L. Wang, J. L. Wang and G. H. Wang, Appl. Phys. Lett. Vol. 86 (2005), p.011913.

Google Scholar

[81] O. Gülseren, F. Ercolessi and E. Tosatti, Phys. Rev. B Vol. 51 (1995), p.7377.

Google Scholar

[82] L. Miao, V. R. Bhethanabotla and B. Joseph, Phys. Rev. B Vol. 72 (2005), p.134109.

Google Scholar

[83] G. A. Breaux, R. C. Benirschke, T. Sugai, B. S. Kinnear and M. F. Jarrold, Phys. Rev. Lett. Vol. 91 (2003), p.215508.

Google Scholar

[84] A. A. Shvartsburg and M. F. Jarrold, Phys. Rev. Lett. Vol. 85 (2000), p.2530.

Google Scholar

[85] K. Joshi, S. Krishnamurty and D. G. Kanhere, Phys. Rev. Lett. Vol. 96 (2006), p.135703.

Google Scholar

[86] S. Chacko, K. Joshi, D. G. Kanhere and S. A. Blundell, Phys. Rev. Lett. Vol. 92 (2004), p.133506.

Google Scholar

[87] G. Guisbiers, O. Van Overschelde and M. Wautelet, Appl. Phys. Lett. Vol. 92 (2008), p.103121.

Google Scholar

[88] M. Schmidt, R. Kusche, B. V. Issendorff and H. Haberland, Nature (London) Vol. 393 (1998), p.238.

Google Scholar

[89] G. A. Breaux, C. M. Neal, B. Cao and M. F. Jarrold, Phys. Rev. Lett. Vol. 94 (2005), p.173401.

Google Scholar

[90] D. J. Wales and R. S. Berry, J. Chem. Phys. Vol. 92 (1990), 4473.

Google Scholar

[91] A. Augado and J. M. Lopez, Phys. Rev. Lett. Vol. 94 (2005), p.233401.

Google Scholar

[92] X. W. Wang, G. T. Fei, K. Zheng, Z. Jin and L. D. Zhang, Appl. Phys. Lett. Vol. 88 (2006), p.173114.

Google Scholar

[93] G. Guisbiers, M. Wautelet, Nanotechnology Vol. 18 (2007), p.435710.

Google Scholar

[94] H. Petrova, J. P. Juste, I. P. Santos, G. V. Hartland, L. M. L. Marzan and P. Mulvaney, Phys. Chem. Chem. Phys. Vol. 8 (2006), p.814.

Google Scholar

[95] H. H. Farrell and C. D. Van Siclen, J. Vac. Sci. Technol. B Vol. 25 (2007), p.1441.

Google Scholar

[96] H. H. Farrell, J. Vac. Sci. Technol. B Vol. 26 (2008), p.1534.

Google Scholar

[97] M. Blackman, N. D. Lisgarten and L. M. Skinner, Nature Vol. 217 (1968), p.1245.

Google Scholar

[98] K. K. Nanda, F. E. Kruis and H. Fissan, Phys. Rev. Lett. Vol. 89 (2002), p.256103.

Google Scholar

[99] K. K. Nanda. A. Maisels, F. E. Kruis, H. Fissan and S. Stappert, Phys. Rev. Lett. Vol. 91 (2003), p.106102.

DOI: 10.1103/physrevlett.91.106102

Google Scholar

[100] M. Schmidt, T. Hippler, J. Donges, W. Kronmüller, B. von Issendorff, H. Haberland and P. Labastie, Phys. Rev. Lett. Vol. 87 (2001), p.203402.

DOI: 10.1103/physrevlett.87.203402

Google Scholar