The Electrical Characterization of Single ZnO Nanowries Field-Effect Transistors

Article Preview

Abstract:

The electrical properties of single ZnO nanowire were researched in the chamber of a scanning electron microscope under high-vacuum conditions using nanomanipulator and measurement system. The result shows that ZnO nanowire resistivity was about 1.4 Ω•cm with Ohmic contact. The local change of electron density induced by Shottky contacts or Ohmic contact with tip and semiconductor/metal materials significantly affects the current transport through the nanowire. Single ZnO nanowire was configured as field effect transistors (FET) and based on metal tantalum (Ta) as electrodes show a pronounced n-type gate modulation with an electron concentration of ~1.0×1019 cm−3 and an electron mobility of ~52 cm2 /V s at a bias voltage of 1 V.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1178-1181

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. L. Wang and J. H. Song: Science Vol. 312 (2006), p.242.

Google Scholar

[2] Z.X. Zhang, L.F. Sun, Y.C. Zhao, Z. Liu, D.F. Liu, L. Cao, B.S. Zou, W.Y. Zhou, C.Z. Gu and S.S. Xie: Nano Lett. Vol. 8 (2008), p.652.

Google Scholar

[3] H.F. Li, Y.H. Huang, Y. Zhang, J.J. Qi, X.Q. Yan, Q. Zhang and J. Wang: Cryst. Growth & Des. Vol. 9 (2009), p.1863.

Google Scholar

[4] M. Lucas, W.J. Mai, R.S. Yang, Z.L. Wang and E. Riedo: Nano Lett. Vol. 7 (2007), p.1314.

Google Scholar

[5] J. Zhou, P. Fei, Y. F. Gao, Y. D. Gu, J. Liu and Z. L. Wang: Nano Lett. Vol. 8 (2008), p.2725.

Google Scholar

[6] X.D. Wang, J. Zhou, J.H. Song, J. Liu, N.S. Xu and Z.L. Wang: Nano Lett. Vol. 6 (2006), p.2768.

Google Scholar

[7] R. S. Friedman, M. C. McAlpine, D. Ham and C. M. Lieber: Nature Vol. 434 (2005), p.1085.

Google Scholar

[8] F. Qian, S. Gradecak, Y. Li, C. Wen and C. M. Lieber: Nano Lett. Vol. 5 (2005), p.2287.

Google Scholar

[9] Q. H. Li, T. Gao, Y. G. Wang and T. H. Wang: Appl. Phys. Lett. Vol. 86 (2005), p.123117.

Google Scholar

[10] S.J. Chang, T.J. Hsueh, I.C. Chen and B.R. Huang: Nanotechnology Vol. 19 (2008), p.095505.

Google Scholar

[11] Y. Dai, Y. Zhang, Y.Q. Bai and Z.L. Wang, Chem. Phys. Lett. Vol. 375 (2003), p.96.

Google Scholar

[12] Z.Y. Zhang, C.H. Jin, Q. Chen and L.M. Peng: Appl. Phys. Lett. Vol. 88 (2006), p.073102.

Google Scholar

[13] M. Li, H.Y. Zhang, X.C. Guo, J.B. Xu and X.J. Fu: Chinese Physics B Vol. 18 (2009), p.1594.

Google Scholar

[14] H. T. Ng, J. Han, P. Nguyen, Y. P. Chen and M. Meyyappan: Nano Lett. Vol. 4 (2004), p.1247.

Google Scholar

[15] D. Weissenberger, D. Gerthsen, A. Reiser, G.M. Prinz, M. Feneberg, K. Thonke, H. Zhou, J. Sartor, J. Fallert, C. Klingshirn and H. Kalt: Appl. Phys. Lett. Vol. 94 (2009), p.042107.

DOI: 10.1063/1.3075849

Google Scholar

[16] Y. Huang, X. Duan, Y. Cui and C.M. Lieber: Nano Lett. Vol. 2 (2002), p.101.

Google Scholar