The Influence of External Mechanical Stresses on Agglomeration and Bending of Solidifying Crystals

Article Preview

Abstract:

The influence of external mechanical stresses on agglomeration and bending of solidifying crystals has been investigated by microstructural characterisation of hypoeutectic Al cast specimens. The samples were produced by near-static cooling, gravity die casting and high pressure die casting (HPDC), where the solidifying crystals experience different levels of mechanical stresses. Electron backscatter diffraction (EBSD) technique was used to acquire grain misorientation data which can be linked to crystal agglomeration and bending behaviour during solidification. The length fraction of low-energy grain boundaries in HPDC samples was substantially higher than in gravity diecast and ‘statically cooled’ samples. This is related to the high amount of shear applied on the solidifying alloy, which promotes crystal collisions and agglomeration. In-grain misorientations were significant only in branched dendritic crystals which were subjected to significant shear stresses. This is attributed to the increased bending moment acting on long, protruding dendrite arms compared to more compact crystal morphologies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1367-1372

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Arnberg, A. Mo, Castability-fluidity and hot tearing, in: Metals Handbook, ASM, 2008, p.375.

DOI: 10.31399/asm.hb.v15.a0005223

Google Scholar

[2] S. Otarawanna, C. M. Gourlay, H. I. Laukli, A. K. Dahle, Metallurgical and Materials Transactions A 40 (2009) 1645-1659.

DOI: 10.1007/s11661-009-9841-1

Google Scholar

[3] S. Otarawanna, C. M. Gourlay, H. I. Laukli, A. K. Dahle, Materials Characterization 60 (2009) 1432-1441.

DOI: 10.1016/j.matchar.2009.06.016

Google Scholar

[4] V. Randle, H. Davies, I. Cross, Current Opinion in Solid State & Materials Science 5 (2001) 3-8.

Google Scholar

[5] D. G. Brandon, Acta Metallurgica 14 (1966) 1479-1484.

Google Scholar

[6] J. K. Mackenzie, Biometrika (1958) 229.

Google Scholar

[7] M. Rappaz, A. Jacot, W. J. Boettinger, Metallurgical and Materials Transactions A 34 (2003) 467-479.

Google Scholar

[8] A. Vogel, R. D. Doherty, B. Cantor, Stir-cast microstructure and slow crack growth, in: Proceedings of the Conference on Solidification and Casting of Metals, The Metals Society, London, UK, Sheffield, UK, 1979, pp.518-525.

Google Scholar

[9] V. Mathier, A. Jacot, M. Rappaz, Modelling and simulation in materials science and engineering 12 (2004) 479-490.

DOI: 10.1088/0965-0393/12/3/009

Google Scholar

[10] S. Sannes, L. Arnberg, M. C. Flemings, Orientational relationships in semi-solid Al-6. 5wt%Al, in: W. Hale (Ed. ) Light Metals 1996, TMS, Warrendale, PA, 1996, pp.795-798.

Google Scholar

[11] R. J. Claxton, Journal of Metals February (1975) 14-16.

Google Scholar

[12] C. L. Martin, P. Kumar, S. Brown, Acta Metallurgica et Materialia 42 (1994) 3603-3614.

Google Scholar

[13] S. Otarawanna, C. M. Gourlay, H. I. Laukli, A. K. Dahle, Acta Materialia 58 (2010) 261-271.

DOI: 10.1016/j.actamat.2009.09.002

Google Scholar

[14] R. D. Doherty, Scripta Materialia 49 (2003) 1219-1222.

Google Scholar

[15] G. Reinhart, A. Buffet, H. Nguyen-Thi, B. Billia, H. Jung, N. Mangelinck-Noel, N. Bergeon, T. Schenk, J. Hartwig, J. Baruchel, Metallurgical and Materials Transactions A 39 (2008) 865-874.

DOI: 10.1007/s11661-007-9449-2

Google Scholar

[16] S. Nafisi, J. Szpunar, H. Vali, R. Ghomashchi, Materials Characterization 60 (2009) 938-945.

DOI: 10.1016/j.matchar.2009.03.005

Google Scholar

[17] T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz, Nature Materials 5 (2006) 660-664.

DOI: 10.1038/nmat1693

Google Scholar