The Contribution of Diffusion Coefficient to the Eutectic Instability and Amorphous Phase Formation

Article Preview

Abstract:

The diffusion coefficient D decides the diffusion length of solute boundary and plays a key role in the microstructure selection. This paper examines quantitatively the contribution of diffusion coefficient to the eutectic instability and amorphorization ability. The maximum growth velocity Vmax and the maximum undercooling Tmax as functions of activation energy Q in strong liquids are deduced theoretically based on eutectic growth model by separating Q from D. It reveals that the larger the Q, the smaller the Tmax and Vmax, which shows the same tendency as experimental values in some Al-based alloys and glass formers. This indicates that it is the sluggish movement of atoms that makes the transition from eutectic to others structural morphologies, even to amorphous phase, occur at smaller interface growth velocity or undercooling, which is the main contribution of the diffusion coefficient to the amorphorization ability.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1355-1358

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Trivedi and W. Kurz:Acta Metall Mater. Vol. 42 (1994), p.15.

Google Scholar

[2] W. Kurz and D. J. Fisher: Fundamentals of Solidification, 4th ed., (Trans Tech Publications. Switzerland 1998).

Google Scholar

[3] F. Zeng, F. Pan: J. Alloy Comp. Vol. 335 (2002), p.181.

Google Scholar

[4] K. A. Jackson and J. D. Hunt: Trans AIME Vol. 236 (1966), p.1129.

Google Scholar

[5] M. Zimmermann, M. Carrard, and W. Kurz: Acta Metall. Mater. Vol. 37(1989) p.3305.

Google Scholar

[6] M. Pierantoni, M. Gremaud, P. Magnin, D. Stoll, and W. Kurz: Acta Metall. Mater. Vol. 40 (1992) p.1637.

Google Scholar

[7] N. Wang, H. Walker, S. David, and R. Trivedi: Trans. Indian Inst. Metals Vol. 60 (2007), p.69.

Google Scholar

[8] J. H. Perepezko, R. J. Herbert, G. Wilde: Mater. Sci. Eng. Vol. 375-377 (2004), p.171.

Google Scholar

[9] N. Wang and R. Trivedi, will submit to Acta Materialia.

Google Scholar

[10] R. Trivedi, P. Magnin, and W. Kurz, Acta Metall., vol 35 (1987), p.971.

Google Scholar

[11] C. A. Angell: Science Vol. 267 (1995) p. (1924).

Google Scholar

[12] G. Duan, M. L. Lind, De K. Blauwe, A. Wiest and W. L. Johnson: Appl. Phys. Lett. Vol. 90 (2007), p.211901.

DOI: 10.1063/1.2741050

Google Scholar

[13] J. S. Harmon, M. D. Demetriou, and W. L. Johnson: Appl. Phys. Lett. Vol. 90 (2007), p.171923.

Google Scholar

[14] G. J. Fan, J. J. Z. Li, W. K. Rhim, D. C. Qiao, H. Choo, P. K. Liaw, W. L. Johnson: Appl. Phys. Lett. Vol. 88 (2006).

Google Scholar