Heterogeneous Nucleation and Grain Formation on Spherical and Flat Substrates

Article Preview

Abstract:

Turnbull’s transformation nucleus model initiated the concept of a growth barrier for a spherical-cap crystal nucleus growing on a small flat substrate. The recently developed free growth model provided a clear physical picture of the growth barrier concept with experimental and modelling support. Fletcher’s spherical substrate model enhanced the understanding of the geometrical effect of a substrate on nucleation. A recent novel analysis of Fletcher’s model furnished new insights into the similarities and differences between nucleation on spherical and flat substrates. It is necessary to distinguish between the undercooling required for nucleation and that for overcoming the growth barrier; the greater one determines the early stages of grain formation.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1339-1342

Citation:

Online since:

June 2010

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. H. Perepezko: Metals Handbook, 9 ed., Vol. 15, Casting (ASM, 1988), p.101.

Google Scholar

[2] M. Qian, P. Cao, M. A. Easton, S. D. McDonald, D. H. StJohn: Acta Mater (2010), doi: 10. 1016/j. actamat. 2010. 01. 052.

Google Scholar

[3] M. Johnsson: Z Metall Vol. 85 (1994), p.781.

Google Scholar

[4] G. Chai, L. Backerud, L. Arnberg: Mater Sci Tech Vol. 11 (1995), p.1099.

Google Scholar

[5] M. A. Easton, D. H. StJohn, in: Light Metals 2001, edited by J. L. Anjier, TMS, Warrendale, p.927.

Google Scholar

[6] D. H. StJohn, M. Qian, M. A. Easton, P. Cao et al.: Metall Mater Trans A Vol. 36 (2005), p.1669.

Google Scholar

[7] P. Cao, M. Qian, D. H. StJohn: Scripta Mater Vol. 56 (2007), p.633.

Google Scholar

[8] D. H. StJohn, P. Cao, M. Qian, M. A. Easton: Adv Eng Mater Vol. 9 (2007), p.739.

Google Scholar

[9] M. J. Bermingham, S. D. McDonald, M. S. Dargusch, D. H. StJohn: J Mater Res Vol. 23 (2008), p.97.

Google Scholar

[10] M. Qian, A. Ramirez: J Appl Phys Vol. 105 (2009), p.013538.

Google Scholar

[11] A. Ramirez, M. Qian, B. Davis, T. Wilks, D. H. StJohn: Scripta Mater Vol. 59 (2008), p.19.

Google Scholar

[12] M. Volmer: Z Elektrochem Vol. 35 (1929), p.555.

Google Scholar

[13] D. Turnbull: Acta Metall Vol. 1 (1953), p.8.

Google Scholar

[14] M. Qian: Acta Mater Vol. 55 (2007), p.943.

Google Scholar

[15] A. L. Greer, A. M. Bunn, A. Tronche, P. V. Evans, D. J. Bristow: Acta Mater Vol. 48 (2000), p.2823.

Google Scholar

[16] R. Gunther, C. Hartig, R. Bormann: Acta Mater Vol. 54 (2006), p.5591.

Google Scholar

[17] M. Qian: Acta Mater Vol. 54 (2006), p.2241.

Google Scholar

[18] B. E. Sundquist: Acta Metall Vol. 11 (1963), p.630.

Google Scholar

[19] N. H. Fletcher: J Chem Phys Vol. 29 (1958), p.572.

Google Scholar

[20] M. Qian, J. Ma: J Chem Phys Vol. 130 (2009), p.214709.

Google Scholar