Investigation on the Mechanical Properties of Molybdenum-Doped Zinc Oxide Transparent Thin Film by Sputtering Technique

Article Preview

Abstract:

Zinc oxide thin films were prepared on the glass substrate by rf-magnetron sputtering technique and their structural, optical, and mechanical characteristics were then investigated. As the SEM images have revealed, the average grain size of ZMO thin film are influenced by pressure and sputter power, and the average value of the grain size is about 30~50 nm. The EDS analysis also revealed a successful doping of Mo in ZnO thin film. The transmittance property of ZMO thin film exhibited an excellent transparency in the visible range, where the transmittance was about 90% for ZMO film with Mo. Moreover, good transmittance was also demonstrated in the range of 350nm to 400nm (UV regime). Finally, the nano-mechanical properties of ZMO thin films were investigated using a nanoindentation technique. The corresponding result would show that the Young’s modulus and hardness both increased with decreasing pressure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1756-1759

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.G. Wanga, S.P. Laua, X.H. Zhangb, H.H. Hngc, H.W. Leea, S.F. Yua and B.K. Taya : Jorunal of Crystal Growth 259 (2003) 335-342.

Google Scholar

[2] H. Sheng, N.W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng and Y. Lu: Journal of Electronic Materials 32 (2003) 935-937.

Google Scholar

[3] Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong and H.W. White: Journal of Crystal Growth 216 (2000) 330-334.

DOI: 10.1016/s0022-0248(00)00437-1

Google Scholar

[4] H.K. Kim, K.K. Kim, S.J. Park and T.Y. Seong: Journal of Applied Physics 94 (2003) 4225-4227.

Google Scholar

[5] J. N. Duenow, T.A. Gessert, D.M. Wood, T. M. Barnes, M. Young, B. To and T. J. Coutts: J. Vac. Sci. Technol. A 25 (2007) 955.

Google Scholar

[6] S. Y. Chu, W. Water and J. T. Liaw: J. Eur. Cera. Soc. 23 (2003) 1593.

Google Scholar

[7] P. Nunes, D. Costa, E. Fortunato and R. Martins: Vacuum 64 (2002) 293.

Google Scholar

[8] M. Krunks and E. Mellikov: Thin Solid film 270 (1995) 33.

Google Scholar

[9] K. H. Yoon and J. Y. Cho: Mater. Res. Bull. 35 (2000) 39.

Google Scholar

[10] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. Zheng: J. Crystal Growth 243 (2002) 151-156.

Google Scholar

[11] Q. P. Wang, D. H. Zhang, Z. Y. Xue, X. J. Zhang: Optical Materials 26 (2004) 23-26.

Google Scholar

[12] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im: Opt. Mater. 17 (2001) 327.

Google Scholar

[13] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay and H. H. Hng: Chem. Phys. Lett. 375 (2003) 113.

Google Scholar

[14] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita: J. Crystal Growth 209 (2000) 522.

Google Scholar

[15] D. G. Baik and S. M. Cho : Thin Solid films 354 (1999) 227.

Google Scholar

[16] A. C. Fischer-Cripps, Nanoindentation, Springer-Verlag, Berlin, (2002).

Google Scholar

[17] W. S. Lee and F. J. Fong: Mater. Sci. Eng. A, vol. 475, pp.319-327, (2008).

Google Scholar