The Preparation for Cu(Sn) Films of Barrierless Interconnection

Article Preview

Abstract:

In this study, Cu films doped with different Sn concentrations from 0.6-1.4 at.% were prepared by magnetron co-sputtering. The electrical resistivities and microstructures of Cu (Sn) films after annealings were investigated. The results showed that a sharp increase of the resistivity of Cu (1.4 at.% Sn) and Cu (1.1 at.% Sn) films were found after annealing above at 500°C. The existence of 0.6 at.% Sn in the Cu film is in solid solution state. A minimum electrical resistivity value of ~3.2μΩ•cm was obtained after annealing at 600°C for 1h . Even after a annealing at 700°C, the Cu/Si interface of Cu (0.6 at.% Sn) film still remained sharp without any Cu-Si and Cu-Sn compounds. The results confirmed that the lower resistivity and higher stability of Cu films can be achieved by strictly control of the doping concentrations and the existing state (solid solution without compounds and precipitates) of Sn element.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

1744-1747

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Koike and M. Wada, Appl. Phys. Lett. 87, (2005) 041911.

Google Scholar

[2] S. Tsukimoto, T. Kabe, K. Ito, and M. Murakami, J. Electron. Mater. 36, (2007) 258.

Google Scholar

[3] J.P. Chu, C.H. Lin, V.S. John, Vac. 83, (2008) 668.

Google Scholar

[4] J. P. Chu, C. H. Lin, J. Electron. Mater. 35, (2006) (1933).

Google Scholar

[5] J.P. Chu, C.H. Lin, and Y.Y. Hsieh, J. Electron. Mater. 35, (2006) 76.

Google Scholar

[6] J. P. Chu, C. H. Lin, W. K. Leau, and V. S. John, J. Electron. Mater. 38, (2009) 100.

Google Scholar

[7] J. P. Chu, C. J. Liu, T. N. Lin, and S. F. Wang, Mater. Chem. and Phys. 72, (2001) 286.

Google Scholar

[8] J. P. Chu, C. H. Chung, P. Y. Lee, J. M. Rigsbee, and J. Y. Wang,. Metall. Mater. Trans. A. 29, (1998) 647.

Google Scholar

[9] K. Barmak, C. Cabral, Jr., K. P. Rodbell, and J. M. E. Harper, J. Vac. Sci. Technol. B 24, (2006) 2485.

Google Scholar

[10] L. A. Clevenger, B. Acrot, W. Ziegler, E. G. Colgan, Q. Z. Hong, F. M. d'Heurle, C. Cabral, Jr., T. A. Gallo, and J. M. E. Harper, J. Appl. Phys. 83, (1998) 90.

Google Scholar

[11] K. N. Tu, Mater. Chem. and Phys. 46, (1996) 217.

Google Scholar

[12] K. Barmak, A. Gungor, C. Cabral, Jr. and J. M .E. Harper, Appl. Phys. Lett. 94, (2003) 1605.

Google Scholar