Compression Behavior and Texture Development of Polymer Matrix Composites Based on NiMnGa Ferromagnetic Shape Memory Alloy Particles

Article Preview

Abstract:

Deformation behavior and texture development of NiMnGa ferromagnetic shape memory alloy (FSMA) particles embedded polymer composites were investigated by compression tests and X-ray diffraction pole-figure analysis (XRD-PF). Both the NiMnGa/silicone and NiMnGa/epoxy composites exhibited a characteristic three-stage deformation which is often seen in shape memory alloys due to martensite variant reorientation. XRD-PF revealed that (004) texture was developed in the compressed NiMnGa/silicone due to the retention of martensite variant reorientation. On the other hand, significant texture change was not recognized in the compressed NiMnGa/epoxy. Rearranged martensite variants was kept after unloading in silicone matrix having low Young's modulus, but reverse reorientation occurred in epoxy matrix with high Young's modulus. The rearrangement behavior of martensite variants is strongly affected by elastic properties of matrix.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 654-656)

Pages:

2103-2106

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ullakko, J. K. Huang, C. Kantner, R.C. O'Handley and V.V. Kokorin: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

Google Scholar

[2] K. Ullakko, J. K. Huang, V. V. Kokorin and R. C. O'Handley: Scripta. Mater. Vol. 36 (1997), p.1133.

Google Scholar

[3] A. A. Likhachev and K. Ullakko: Phys. Lett. Vol. A275 (2000), p.142.

Google Scholar

[4] O. Heczko, A. Sozinov and K Ullakko: IEEE Trans. Magn. Vol. 36 (2000), p.3266.

Google Scholar

[5] S. J. Murray, M. Marioni, S. M. Allen, R. C. O'Handley and T. A. Lograsso: Appl. Phys. Lett. Vol. 77 (2000), p.886.

Google Scholar

[6] S. J. Murray, M. Marioni, P. G. Tello, S. M. Allen and R. C. O'Handley: J. Magn. Magn. Mater. Vol. 226-230 (2001), p.945.

Google Scholar

[7] A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko: Appl. Phys. Lett. Vol. 80 (2002), p.1746.

Google Scholar

[8] H. Hosoda, S. Takeuchi, T, Inamura and K. Wakashima: Sci. Tech. Adv. Mater. Vol. 5 (2004), p.503.

Google Scholar

[9] N. Scheerbaum, D. Hinz, O. Gutfleisch, K. -H. Müller and L. Schultz: Acta. Mater. Vol. 55 (2007), p.2707.

Google Scholar

[10] D. Hinz, N. Scheerbaum, O. Gutfleisch, K. -H. Müller and L. Schultz: J. Magn. Magn. Mater. Vol. 310 (2007), p.2785.

Google Scholar

[11] N. Scheerbaum, D. Hinz, O. Gutfleisch, W. Skrotzki and L. Schultz: J. Appl. Phys. Vo. 101 (2007) p. 09C501.

Google Scholar

[12] M. Richard, J. Feuchtwanger, D. Schlagel, T. Lograsso, S. M. Allen and R.C. O'Handley: Scripta Mater. Vol. 54 (2006), p.1797.

Google Scholar