Electrochemical and Spectroscopic Dynamics of Nanostructured Polynuclear Sulphonic Acid-Doped Poly(2, 5-dimethoxyaniline)

Article Preview

Abstract:

Conducting and electroactive nanostructured poly(2, 5-dimethoxyaniline), PDMA, doped with anthracene sulphonic acid, ASA, and phenanthrene sulphonic acid, PSA, respectively, were prepared by oxidative polymerisation of 2, 5-dimethoxyaniline, DMA, with ammonium persulphate as oxidant. Scanning electron microscope, SEM, images of the polymers showed well defined nanotubes and fibrils with diameters of between 50 to 100 nm and 200 to 300 nm for PDMA-ASA and PDMA-PSA, respectively. Evidence of the incorporation of ASA and PSA into the PDMA backbone was provided by UV-Vis and FTIR analyses. Electrochemical interrogation of the sulphonic acid-doped polymers by cyclic voltammetry showed that both PDMA-ASA and PDMA-PSA exhibit quazi-reversible electrochemistry. The standard rate constant, ko, for the charge transfer reactions of PDMA-ASA and PDMA-PSA were 3.81 x 10-4 cm s-1 and 3.27 x 10-5 cm s-1, respectively. There was a relationship between the ko value and the formal potential, E0ʹ, of the polymeric nanomaterial. PDMA-ASA that had larger ko value gave an E0ʹ value of 134 mV which was lower than that of PDMA-PSA by 19 mV, indicating that PDMA-ASA has lower activation energy than PDMA-PSA for the electron transfer process Electrochemical impedance spectroscopy over a range of potentials showed that the polymeric nanotubues exhibited high conductivities, though the SA-doped polymer was more conducting.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-248

Citation:

Online since:

July 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Johans, J. Clohessy, S. Fantini, K. Kontturi and V.J. Cunnane: Electrochem. Commun. Vol. 4 (2002), p.227.

Google Scholar

[2] A.R. Hopkins, R.A. Lipeles and W.H. Kao: Thin Solid Films, Vol. 474 (2004), p.447.

Google Scholar

[3] P. Bernier, S. Lefrant and G. Bidan: Advances in Synthetic Metals - Twenty years of Progress in Science and Technology (Elsevier 1999).

Google Scholar

[4] M.G. Han, S.K. Cho, S.G. Oh and S.S. Im: Synth. Met. Vol. 126 (2002), p.53.

Google Scholar

[5] B. Schrader: Infrared and Raman Spectroscopy - Methods and Applications (VCH 1995).

Google Scholar

[6] G. Zerby: Modern Polymer Spectroscopy (Wiley-VCH 1999).

Google Scholar

[7] Z. Wei, Z. Zhang and M. Wan: Langmuir Vol. 18 (2000), p.917.

Google Scholar

[8] S.J. Su and N. Kuramoto: Synth. Met. Vol. 108(2000), p.121.

Google Scholar

[9] I. D. Norris, L.A.P. Kane-Maguire and G.G. Wallace: Macromolecules Vol. 33 (2000), p.3237.

Google Scholar

[10] G. Appela, R. Mikaloa, K. Henkela, A. Opreaa, A. Yfantisa, I. Paloumpaa and D. Schmeiûera: Solid-State Electronics Viol. 44 (2000), p.855.

Google Scholar

[11] A. Pud, N. Ogurtsov, A. Korzhenko and G. Shapoval: Prog. Polym. Sci. Vol. 28 (2003), p.1701.

Google Scholar

[12] L. Zhang and M. Wan: Thin Solid Films Vol. 477 (2005), p.24.

Google Scholar

[13] R.O. Akinyeye, M. Sekota, P. Baker and E. Iwuoha: Fullerenes, Nanotubes and Carbon Nanostructures Vol. 14 (2006), p.49.

DOI: 10.1080/15363830500540900

Google Scholar

[14] R.O. Akinyeye, I. Michira, M. Sekota, A. Al-Ahmed P. Baker and E. Iwuoha: Electroanalysis Vol. 18(24) (2006), p.2441.

DOI: 10.1002/elan.200603699

Google Scholar

[15] I.N. Michira, M. Klink, R.O. Akinyeye, V. Somerset, M. Sekota, A. Al-Ahmed, P.G.L. Baker and E.I. Iwuoha, in: Recent Advances in Analytical Electrochemistry edited by K. Ozoemena, Transworld Research Network, India (2007).

DOI: 10.1002/masy.200750905

Google Scholar

[16] E.I. Iwuoha D.S. de Villaverde, N.P. Garcia, M.R. Smyth and J.M. Pingarron: Biosens. and Bioelectr. Vol. 12 (1997), p.749.

Google Scholar

[17] J. McMurry: Organic Chemistry, 2nd Edition (Brooks/Cole publishing company, California, USA 1988).

Google Scholar

[18] R.T. Morrison and R. N. Boyd: Organic Chemistry, 5th Edition (Allyn and Bacon Inc., USA 1987).

Google Scholar

[19] T.N. Sorrell: Organic Chemistry (University Science Books, California, USA 1999).

Google Scholar

[20] A.I. Vogel: Vogel's Text Book of Practical Organic Chemistry, 5th Edition (Wiley, New York 1989).

Google Scholar

[21] Z. Zhang and M. Wan: Synth. Met. Vol. 128 (2002), p.83.

Google Scholar

[22] Z. Zhang and M. Wan: Synth. Met. Vol. 132 (2003), p.205.

Google Scholar

[23] K.R. Prasad and N. Munichandraiah: Synth. Met. Vol. 123 (2001), p.459.

Google Scholar

[24] L. Huang, T. Wen and A. Gopalan: Synth. Met. Vol. 130 (2002), p.155.

Google Scholar

[25] L. Huang, T. Wen and A. Gopalan: Mat. Chem. & Phys. Vol. 77 (2002), p.726.

Google Scholar

[26] N.G.R. Mathebe, A. Morrin and E. I. Iwuoha: Talanta Vol. 64 (2004), p.115.

Google Scholar

[27] F. Cataldo and P. Maltese: Euro. Polym. J. Vol. 28 (2002), p.1791.

Google Scholar

[28] W.A. Gazotti and M. dePaoli: Synth. Met. Vol. 80 (1996), p.263.

Google Scholar

[29] A.J. Bard, L.R. Faulkner: Electrochemical methods - Fundamentals and Applications, 2nd edition (John Wiley & Sons, Inc. USA 2001).

Google Scholar

[30] A.P. Brown, F.C. Anson: Anal. Chem. Vol. 49 (1977), P. 1589.

Google Scholar

[31] S. Brahim, A. N Wilson, D. Nariesingh and E. Iwuoha, A. Guiseppi-Elie : Michrochim. Acta Vol. 143 (2003), p.127.

Google Scholar

[32] P. Zanello, Inorganic Electrochemistry (Theory, Practice and Applications), Royal Society of Chemistry, Cambridge, UK, 2003, 49.

Google Scholar

[33] R.S. Nicholson: Anal. Chem. Vol. 37 (1965), p.1351.

Google Scholar

[34] R.S. Nicholson and I. Shain: Anal. Chem. Vol. 36 (1964), p.706.

Google Scholar

[35] P.M.S. Monk: Fundamentals of Electroanalytical Chemistry (John Willy and Sons Ltd, England 2005).

Google Scholar