Pyrolysis of Sugarcane Bagasse: A Consecutive Reactions Kinetic Model from TGA Experiments

Article Preview

Abstract:

The pyrolysis kinetics of sugarcane bagasse in nitrogen flow was studied by thermogravimetric analysis from room temperature to 1173 K at different heating rates (1.5, 3, 5, 10, 15, 20, 30 and 50 K/min). As there are three distinct devolatilization peaks in the DTG curve, each peak was associated to thermal decomposition of an individual biomass subcomponent (hemicellulose, cellulose and lignin). The kinetic model adopted was a consecutive reactions model. The kinetic parameters of the pyrolysis process, such as activation energy and pre-exponential factor, were calculated by least squares non-linear method and Scilab are used as the simulation tool. The simulated results showed a good agreement with the experimental data and the parameters found are similar to reported by the literature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

593-598

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. McKendry: Bioresource Technol. Vol. 83 (2002), p.37.

Google Scholar

[2] C. Di Blasi: Progress in Energy and Combustion Science Vol. 34 (2008), p.47.

Google Scholar

[3] R. Bilbao, A. Millera and J. Arauzo: Thermochim. Acta Vol. 143 (1989), p.137.

Google Scholar

[4] A. G. W. Bradbury, Y. Sakai and F. Shafizadeh: J. Appl. Polym. Sci. Vol. 23 (1979), p.3271.

Google Scholar

[5] M. Gronli, M.J. Antal and G. Várhegyi: Ind. Eng. Chem. Res. Vol. 38 (1999), p.2238.

Google Scholar

[6] E.L.K. Mui, W.H. Cheung, V.K.C. Lee and G. McKay: Ind. Eng. Chem. Res. Vol. 47 (2008), p.5710.

Google Scholar

[7] M. Müller-Hagedorn and H. Bockhorn: J. Anal. Appl. Pyrolysis Vol. 79 (2007), p.136–146.

Google Scholar

[8] R. Radmanesh, Y. Courbariaux, J. Chaouki and C. Guy: Fuel Vol. 85 (2006), p.1211–1220.

DOI: 10.1016/j.fuel.2005.11.021

Google Scholar

[9] T.R. Rao and A. Sharma: Energy Vol. 23, (11) (1998), p.973–978.

Google Scholar

[10] P.T. Williams and S. Besler: Fuel Vol. 72 (2) (1993), p.151.

Google Scholar

[11] G. Várhegyi, P. Szabo and M.J. Antal Jr.: Energy & Fuels Vol. 16 (2002) p.724.

Google Scholar

[12] C.J. Goméz, J.J. Manyà, E. Velo and L. Puigjaner: Ind. Eng. Chem. Res Vol. 43 (2004), p.901.

Google Scholar

[13] S. Hu, A. Jess and M. Xu: Fuel Vol. 86 (2007), p.2778.

Google Scholar

[14] J.J. Manyà and J. Arauzo: Chemical Engineering Journal Vol. 139 (2008), p.549.

Google Scholar

[15] J.J.M. Órfão, F.J.A. Antunes and J.L. Figueiredo: Fuel Vol. 78 (1999), p.349.

Google Scholar

[16] V. Vamvuka, E. Kakaras, E. Kastanaki and P. Grammelis: Fuel, Vol. 82 (2003), p. (1949).

DOI: 10.1016/s0016-2361(03)00153-4

Google Scholar

[17] G. Varhegyi, M. J. Antal Jr., T. Szekely and P. Szabo: Energy & Fuels, Vol. 3 (1989), p.329.

Google Scholar

[18] J.F. Gonzáles, J.M. Encinar, J.L. Canito, E. Sabio and M. Chacón: Journal of Analytical and Applied Pyrolysis Vol. 57 (2003), p.165.

Google Scholar

[19] C. R. Duarte, V.V. Murata and M.A.S. Barrozo: Brazilian Journal of Chemical Engineering Vol. 22 (2005), p.263.

Google Scholar

[20] K.G. Santos, V.V. Murata and M.A.S. Barrozo: Canadian Journal of Chemical Engineering Vol. 87 (2009), p.211.

Google Scholar

[21] F.G. Cunha, K.G. Santos, C.H. Ataide, N. Epstein and M.A.S. Barrozo: Ind. Eng. Chem. Res. Vol. 48 (2009), p.976.

Google Scholar

[22] H. Teng, H.C. Lin and J.A. Ho: Ind. Eng. Chem. Res. Vol. 36 (1997), p.3974.

Google Scholar