Synthesis of Ni-Zn Ferrite Catalysts by Combustion Reaction Using Different Fuels

Article Preview

Abstract:

The aim of this work is to evaluate the effect of different fuels in the preparation of Ni-Zn ferrites by combustion reaction. The catalysts were prepared according to the propellants chemistry, in stoichiometric composition, using a vitreous silica container. Carbohydrazine, monohydrated citric acid and glycine fuels were used. During the synthesis parameters as flame combustion time and temperature were measured. The structural and morphological characteristics of the powders were evaluated by XRD, textural analysis by nitrogen adsorption and SEM. The fuel monohydrated citric acid presented the greatest time and temperature of combustion reaction. The results show that the type of fuel changed the final characteristics of the powders. The XRD results showed the formation of Ni-Zn ferrite phase for all fuels used in this study. The powders prepared with carbohydrazine resulted in largest value of surface area. All powders showed morphology constituted by soft agglomerates of nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

943-947

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. -C. Hsu, S.C. Chen, P.C. Kuo, C.T. Lie and W.S. Tsai: Mater. Sci. Eng. B Vol. 111 (2004), p.142.

Google Scholar

[2] M. C. Rezende, I. M. Martin, R. Faez, M. A. S. Miacci and E. L. Nohara: Rev. Fis. Apl. Instr. Vol. 15 (2002), p.24.

Google Scholar

[3] A. Khan and P. G. Smirniotis, J. Molec. Catal. A: Chem. Vol. 280 (2008), p.43.

Google Scholar

[4] J. P. Chen, C. M. Sorensen, K .J. Klabunde, G. C. Hadjipanayis, E. Devlin and A. Kostikas: Phys. Rev. B Vol. 54 (1996), p.9288.

Google Scholar

[5] R. V. Mangalaraja, S. T. Lee, S. Ananthakumar, P. Manohar and C. P. Camurri: Mater. Sci. Engin. A Vol. 476 (2008), p.234.

Google Scholar

[6] H. Gul, W. Ahmed and A. Maqsood: J. Magnet. Mag. Mater. Vol. 320 (2008), p.270.

Google Scholar

[7] H. -W. Wang and S. -C. Kung: J. Magnet. Mag. Mater. Vol. 270 (2004), p.230.

Google Scholar

[8] J. Azadmanjiri: Mater. Chem. Phys. Vol. 109 (2008), p.109.

Google Scholar

[9] M. Mouallem-Bahout, S. Bertrand, O. Peña: J. Solid State Chem. Vol. 178 (2005), p.1080.

Google Scholar

[10] C. -C. Hwang, T. -Y. Wu, J. Wan and J. -S. Tsai: Mat. Sci. Eng. B: Vol. 111 (2004), p.49.

Google Scholar

[11] A. C. F. M. Costa, M. R. Morelli and R. H. G. A. Kiminami, in Combustion Synthesis Processing of Nanoceramics, edited by T. -Y. Tseng and H. S. Nalwa, volume 1 of Handbook of Nanoceramics and Their Based Nanodevices, chaper 14: Americam Scientific Publishers (2007).

Google Scholar

[12] A. C. F. M. Costa, A. P. Diniz, L. Gama, M. R. Morelli and R. H. G. A. Kiminami: J. Metast. Nanocrist. Mater: Vol. 20-21 (2004), p.582.

Google Scholar

[13] S. R. Jain, K. C. Adiga and V. R. Pai Verneker: Combust. Flame Vol. 40 (1981), p.71.

Google Scholar

[14] H. P. Klung and L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials. (Wiley, New York, 1997), p.637.

Google Scholar

[15] J. S. Reed: Principles of ceramics processing. (2ª ed. ), (1995), p.127.

Google Scholar

[16] S. J. Gregg and K. S. W. Sing: Adsorption, surface and porosity. (2ª Edition, Academic Press, London, 1982).

Google Scholar

[17] K. Kaneko: J. Mem. Sci. Vol. 96 (1994), p.59.

Google Scholar