The Effect of Hydrothermal Treatment on Samaria and Gadolinia Doped Ceria Powders Synthesized by Coprecipitation

Article Preview

Abstract:

One of the main applications of ceria-based (CeO2) ceramics is the manufacturing of Intermediate Temperature Solid Oxide Fuel Cells electrolytes. In order to improve ionic conductivity and densification of these materials various powder synthesis routes have been studied. In this work powders with composition Ce0.8(SmGd)0.2O1.9 have been synthesized by coprecipitation and hydrothermal treatment. A concentrate of rare earths containing 90wt% of CeO2 and other containing 51% of Sm2O3 and 30% of Gd2O3, both prepared from monazite processing, were used as precursor materials. The powders were characterized by X-ray diffraction, scanning and transmission electron microscopy, agglomerate size distribution by laser scattering and specific surface area by gas adsorption. Ceramic sinterability was evaluated by dilatometry and density measurements by Archimedes method. High specific surface area powders (~100m2/g) and cubic fluorite structure were obtained after hydrothermal treatment around 200°C. Ceramic densification was improved when compared to the one prepared from powders calcined at 800°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 660-661)

Pages:

959-964

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. M Haile: Acta Mater. Vol. 51 (2003), p.5981.

Google Scholar

[2] D. Z. Florio, F. C. Fonseca, E. N. S. Muccillo and R. Muccillo, Cerâmica, Vol. 50 (2004), p.275.

DOI: 10.1590/s0366-69132004000400002

Google Scholar

[3] A. Abrão, Química e Tecnologia das Terras-Raras. CETEM/CNPq – Série Tecnologia Mineral Vol. 66 Rio de Janeiro, RJ. (1994).

Google Scholar

[4] K. Higashi, K. Sonoda, H. Ono; S. Sameshima and Y. Hirata: J. Mater. Res. Vol. 14 (3) (1999), p.957.

Google Scholar

[5] B. Djuricic and S. Pickering: J. Eur. Ceram. Soc. Vol. 19 (1999), p. (1925).

Google Scholar

[6] J.G. Li, T. Ikegami, Y. Wang and T. Mori: J. Am. Ceram. Soc. Vol. 85 (9) (2002), p.2376.

Google Scholar

[7] W. Huang, P. Shuk and M. Greenblatt: Solid State Ionics Vol. 100 (1997), p.23.

Google Scholar

[8] T. Mahata, G. Das; R. K. Mishra and B. P. Sharma: J. Alloys Compd. Vol. 391 (2005), p.129.

Google Scholar

[9] A. Vantomme, Z.Y. Yuan, G. Du and B.L. Su: Langmuir Vol. 21(3) (2005), p.1132.

Google Scholar

[10] C. Pan, D. Zhang and L. Shi: J. Solid State Chem. Vol. 181 (2008), p.1298.

Google Scholar

[11] D. Zhang, H. Fu, L. Shi, J. Fang and Q. J. Li: Solid State Chem. Vol. 180 (2007), p.654.

Google Scholar

[12] K. Zhou, Z. Yang and S. Yang: Chem. Mater. Vol. 19 (2007), p.1215.

Google Scholar

[13] Q. Yuan, H. H. Duan, L.D. Sun, Y.W. Zhang and C. H. J. Yan: J. Colloid. Interf. Sci. Vol. 335 (2009), p.151.

Google Scholar

[14] M. Wu, Q. Zhang, Y. Liu, Q. Fang and X. Liu: Mater. Res. Bull. Vol. 44 (2009), p.1437.

Google Scholar

[15] Z. Yang, Y. Yang, H. Liang and L. Liu: Mater. Lett. Vol. 63 (2009), p.1774.

Google Scholar

[16] A. A. Atwale, M.S. Bapat and P. A. Desai: J. Alloys Compd. ( 2009), in press.

Google Scholar

[17] M. S. Tsai: Mat. Lett. Vol. 58 (2004), p.2270.

Google Scholar

[18] F. Zhou, X. Ni, Y. Zhang and H. Zheng: J. Colloid Interface Sci. Vol. 307 (2007), p.135.

Google Scholar

[19] Z. Guo, F. Du, G. Li and Z. Cui: Inorg. Chem. Vol. 45 (2006), p.4167.

Google Scholar

[20] M. Mogensen, N. M. Sammes and G. A. Tompsett: Solid State Ionics Vol. 129 (2000), p.63.

Google Scholar