First-Principles Study of Electron Transport Behavior through Porphyrin Molecular Wires

Article Preview

Abstract:

The nonequilibrium Green’s function approach in combination with density-functional theory is used to perform ab inito quantum-mechanical calculations of the electron transport properties of porphyrin oligomers sandwiched between two gold electrodes. The results show that porphyrin oligomers are good candidates for long-range conduction wires. In particular, the decay of conductance of porphyrin oligomers does not follow the exponential relation. The electron transport behavior was analyzed from the molecular projected self-consistent Hamiltonian states and the electron transmission spectra of the molecular junctions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 663-665)

Pages:

616-619

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Aviram and M.A. Ratner: Chem. Phys. Lett. Vol. 29 (1974), p.277.

Google Scholar

[2] K. Moth-Poulsen1 and T. Bjørnholm: Nature Nanotech. Vol. 4 (2009), p.551.

Google Scholar

[3] A. Błaszczyk, M. Chadim, C. von Hänisch and M. Mayor: Eur. J. Org. Chem. Vol. 2006 (2006), p.3809.

DOI: 10.1002/ejoc.200600336

Google Scholar

[4] J. Otsuki, T. Akasaka and K. Araki: Coordin. Chem. Rev. Vol. 252 (2008), p.32.

Google Scholar

[5] Y.W. Li, J.W. Zhao, X. Yin and G.P. Yin: ChemPhysChem Vol. 7 (2006), p.2593.

Google Scholar

[6] H. Nakanishi, K. Miyamoto, M.Y. David, E.S. Dy, R. Tanaka and H. Kasai: J. Phys.: Condens. Matter Vol. 19 (2007), p.365234.

DOI: 10.1088/0953-8984/19/36/365234

Google Scholar

[7] Y.W. Li, J.H. Yao, C.J. Liu, J.W. Yang and C.L. Yang: Phys. Lett. A. Vol. 373 (2009), p.3974.

Google Scholar

[8] S.U. Lee, R.V. Belosludov, H. Mizuseki and Y. Kawazoe: Small Vol. 4 (2008), p.962.

Google Scholar

[9] Gaussian 09, Revision A. 02, Gaussian, Inc., Wallingford CT, (2009).

Google Scholar

[10] Y.W. Li, J.W. Zhao, X. Yin, H.M. Liu and G.P. Yin: Phys. Chem. Chem. Phys. Vol. 9 (2007), p.1186.

Google Scholar

[11] J.C. Cuevas, J. Heurich, F. Pauly, W. Wenzel and G. Schon: Nanotechnology Vol. 14 (2003), p. R29.

Google Scholar

[12] S. Sen and S. Chakrabarti: J. Phys. Chem. C. Vol. 112 (2008), p.15537.

Google Scholar

[13] J. Taylor, H. Guo and J. Wang: Phys. Rev. B Vol. 63 (2001), p.245407.

Google Scholar

[14] K. Stokbro, J. Taylor and M. Brandbyge: J. Am. Chem. Soc. Vol. 125 (2003), p.3674.

Google Scholar

[15] A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V.B. Engelkes and C.D. Frisbie: Adv. Mater. Vol. 15 (2003), p.1.

DOI: 10.1002/adma.200306091

Google Scholar

[16] Y.W. Li, J.W. Zhao, X. Yin and G.P. Yin: J. Phys. Chem. A Vol. 110 (2006), p.11130.

Google Scholar

[17] G. Sedghi, K. Sawada, L.J. Esdaile, M. Hoffmann, H.L. Anderson, D. Bethell, W. Haiss, S.J. Higgins and R.J. Nichols: J. Am. Chem. Soc. Vol. 130 (2008), p.8582.

DOI: 10.1021/ja802281c

Google Scholar

[18] H. Meier: Angew. Chem. Int. Ed. Vol. 48 (2009), p.3911.

Google Scholar