Grain Boundary Segregation of Carbon and Formation of Nanocrystalline Iron-Carbon Alloys by Ball Milling

Article Preview

Abstract:

Based on a novel defactants (defect acting agents) concept (R. Kirchheim, Acta Materialia 55 (2007) 5129 and 5139), a novel method of understanding and synthesizing NC material was proposed by introducing defactants (segregating solute atoms) into the materials to ease the formation of grain boundaries (GBs) and enhance the formation ability of nanocrystalline (NC) structures. The iron-carbon system was chosen as a model system where carbon acts as the so-called defactant. Iron powders mixed with different amount of graphite were ball milled to prepare NC iron-carbon alloys with different carbon concentrations (C0). After ball milling, the as-milled powder with relatively low carbon concentration was annealed at a certain temperature to achieve saturation of GBs by carbon atoms. The microstructures of the powders were investigated by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD) methods. The mean grain sizes (D) of the powders were determined by analyzing TEM dark field images and X-ray line profiles. The results indicated that once the saturation of GBs is achieved, D of the NC iron-carbon powders will be strongly dependent on C0 and will follow a simple mass balance of carbon in a closed system, i.e. D=3ΓgbVm/(C0-Cg) with Cg the carbon concentration in grains, Γgb the grain boundary excess, and Vm the molar volume of iron. Based on the experimental results, the formation of NC iron-carbon alloys was treated in detail within the framework of the defactant concept. The increase of C0 significantly reduces the formation energy of GBs, leading to a substantial decrease of D.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

265-270

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Kirchheim, Acta Mater. Vol. 55 (2007), p.5129 R. Kirchheim, Acta Mater. Vol. 55 (2007), p.5139 R. Kirchheim, IJMR (Z. Metallkde) Vol. 100 (2009), p.483.

DOI: 10.1016/j.actamat.2007.05.047

Google Scholar

[2] K. Lu, Mater. Sci. Eng. R Vol. 16 (1996), p.161.

Google Scholar

[3] K. Boylan, D. Ostrander, U. Erb, G. Palumbo and K.T. Aust, Scripta Metall. Vol. 25 (1991), p.2711.

Google Scholar

[4] T. Hentschel, D. Isheim, R. Kirchheim, F. Müller and H. Kreye, Acta Mater., Vol. 48 (2000), p.933.

Google Scholar

[5] B. Färber, E. Cadel, A. Menand, G. Schmitz and R. Kirchheim, Acta Mater. Vol. 48 (2000), p.789.

Google Scholar

[6] S. C. Mehta, D. A. Smith, U. Erb, Mater. Sci. Eng. Vol. A204 (1995), p.227.

Google Scholar

[7] K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K. T. Aust, Scripta. Mater. Vol. 25 (1991), p.2711.

Google Scholar

[8] J. Weissmuller, W. Krauss, T. Haubold, R. Birringer, and H. Gleiter, Nanostructured Mater. Vol. 1 (1992), p.439.

Google Scholar

[9] Y. R. Abe, J. C. Holzer, W. L. Johnson, Mat. Res. Soc. Symp. Proc. Vol. 28 (1992), p.238.

Google Scholar

[10] K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood, C.C. Koch, Scripta Mater. Vol. 59 (2008), p.530.

Google Scholar

[11] P. Choi, M. da Silva, U. Klement, T. Al-Kassab, R. Kirchheim, Acta Mater. Vol. 53 (2005), p.4473.

Google Scholar

[12] A.J. Detor and C.A. Schuh, J. Mater. Res., Vol. 22 (2007), p.3233.

Google Scholar

[13] U. Klement and M. da Silva, Journal of Iron and Steel Research International Vol. 14 (2007), p.173.

Google Scholar

[14] H. Hidaka, T. Tsuchiyama and S. Takaki, Scripta Mater. Vol. 44 (2001), p.1503.

Google Scholar

[15] S. Ohsaki, K. Hono, H. Hidaka, S. Takaki, Scripta Mater. Vol. 52 (2005), p.271.

Google Scholar

[16] H.W. Zhang, R. Gopalan, T. Mukai, K. Hono, Scripta Mater. Vol. 54 (2006), p.1827.

Google Scholar

[17] H.W. Zhang, R. Gopalan, T. Mukai, K. Hono, Scripta Mater. Vol. 53 (2005), p.863.

Google Scholar

[18] B. Srinivasarao, K. Oh-ishi, T. Ohkubo, T. Mukai, K. Hono, Scripta Mater. Vol. 58 (2008), p.759.

DOI: 10.1016/j.scriptamat.2007.12.016

Google Scholar

[19] L. Balogh, G. Ribárik, T. Ungár, J. Appl. Phys. Vol. 100 (2006), p.023512.

Google Scholar

[20] G. Ribárik, J. Gubicza, T. Ungár, Mater. Sci. Eng. Vol. A387-389 (2004), p.343.

Google Scholar

[21] Information on http: /www. renyi. hu/cmwp.

Google Scholar

[22] T. Ungár, J. Gubicza, G. Ribárik, A. Borbely, Journal of Applied Crystallography, Vol. 34 (2001), p.298.

Google Scholar

[23] T. Ungár, Nanostructured Mater. Vol. 7 (1996), p.779.

Google Scholar

[24] Y.J. Li, Y.Z. Chen, A. Herz, and R. Kirchheim, Unpublished work.

Google Scholar

[25] S.S. Babu, E. D. Specht, S. A. David, E. Karapetrova, P. Zschack, M. Peet and H. K. D. H. Bhadeshia, Metall. Mater. Trans. A Vol. 36A (2005), p.3281.

DOI: 10.1007/s11661-005-0002-x

Google Scholar

[26] A. L. Patterson, Phys. Rev. Vol. 56 (1939), p.978.

Google Scholar

[27] G.K. Williamson, W.H. Hall. Acta Metall Vol. 1(1953), p.22.

Google Scholar

[28] B.E. Warren, B.L. Averabach. J Appl Phys Vol. 21 (1950) p.595.

Google Scholar