On the Theoretical Limits of Microstructure Evolution in Severe Plastic Deformation

Article Preview

Abstract:

Systematic radiotracer diffusion studies on metals present in severely deformed, ultra-fine grained (UFG) states have revealed the existence of ultra-fast transport paths, which include the so-called “non-equilibrium” grain boundaries and other defects including excess free volume. Under certain experimental conditions percolating porosity is produced even in a ductile metal like pure copper. This result indicates the importance of the cavitation phenomena in severe plastic deformation under those conditions. It is well known that micro-cracking can take place in metals rather early, if the local maximum shear stress equals or exceeds the shear yield stress of the material. However, the growth and propagation of these cracks will be postponed till very late in the deformation process because of the intrinsic ductility of metals, the effect of the superimposed hydrostatic component of the stress system and/ or concurrent dynamic recovery/ recrystallization, when the latter two are present (which is likely to be the case, if the severe plastic deformation operation is successful). That is, the stage in which crack growth and propagation is present represents a material state in which the scope for further deformation is exhausted and fracture processes have taken over. Using these and similar ideas, the load required for equal channel angular pressing, the change in the slope of the Hall-Petch plot with decreasing grain size and the theoretical limit for the smallest grain size attainable in a metal subjected to a severe plastic deformation (SPD) process are predicted and checked against experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

283-288

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, M.J. Zehetbauer, Y. Estrin, H.W. Höppel, Y. Ivanisenko, H. Hahn, G. Wilde, H.J. Roven, X. Sauvage and T.G. Langdon: Adv. Engn. Mater. 9 (2007) 527.

DOI: 10.1002/adem.200700078

Google Scholar

[2] R.Z. Valiev: Nature Mater. 3 (2004) 511.

Google Scholar

[3] A.A. Nazarov, A. E. Romanov and R.Z. Valiev: Acta Metall. Mater. 41 (1993) 1033.

Google Scholar

[4] T. Hebesberger, H.P. Stüwe, A. Vorhauer, F. Wetscher and R. Pippan: Acta Mater. 53 (2005) 393.

DOI: 10.1016/j.actamat.2004.09.043

Google Scholar

[5] X. Molodova , A. Khorashadizadeh , G. Gottstein, M. Winning and R.J. Hellmig: Int. J. Mater. Res. 98 (2007) 269.

Google Scholar

[6] G.P. Dinda, H. Rösner and G. Wilde: Scr. Mater. 52 (2005) 577.

Google Scholar

[7] G. Wilde, N. Boucharat, G.P. Dinda, H. Rösner, R.Z. Valiev: Mater. Sci. Forum 503–504 (2005) 425.

DOI: 10.4028/www.scientific.net/msf.503-504.425

Google Scholar

[8] R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer and I. Sabirov: Adv. Engineer. Mater. 8 (2006) 1046.

DOI: 10.1002/adem.200600133

Google Scholar

[9] A.P. Zhilyaev and T.G. Langdon: Progr. Mater. Sci. 53 (2008) 893.

Google Scholar

[10] K. Oh-ishi, Z. Horita, D.J. Smith, R.Z. Valiev, M. Nemoto, T.G. Langdon: J. Mater. Res. 14 (1999) 4200.

Google Scholar

[11] A. Bachmaier, M. Hafok and R. Pippan: JIM Mater. Trans. 51 (2010) 8.

Google Scholar

[12] V.V. Rybin: High Plastic Deformation and Fracture of Metals (Metallurgia, Moscow 1986).

Google Scholar

[13] A.M. Glezer: Bull. Russ. Acad. Science. 71 (2007) 1722.

Google Scholar

[14] T.G. Langdon: Mater. Sci. Eng. A 462 (2007) 3.

Google Scholar

[15] I.J. Beyerlein, R.A. Lebensohn and C.N. Tome: Mater. Sci. Eng. A 345 (2003) 122.

Google Scholar

[16] J.W. Signorelli, P.A. Turner, V. Sordi, M. Ferrante, E.A. Vieira and R.E. Bolmaro: Scr. Mater. 55 (2006) 1099.

Google Scholar

[17] F.A. Mohamed: Acta Mater. 51 (2003) 4107.

Google Scholar

[18] W. Blum, Y.J. Li and K. Durst: Acta Mater. 57 (2009) 5207.

Google Scholar

[19] Y.J. Li, X.H. Zeng and W. Blum: Acta Mater. 52 (2004) 5009.

Google Scholar

[20] M.J. Zehetbauer, L.F. Zeipper and E. Schafler, in: Nanostructured Materials by High-Pressure Severe Plastic Deformation, NATO Sci. Series II: Mathematics, Physics and Chemistry, Vol. 212, 2006, p.217.

DOI: 10.1007/1-4020-3923-9_30

Google Scholar

[21] M.A. Meyers, V.F. Nesterenko, J.C. LaSalvia and Q. Xue: Mater. Sci. Eng. A 317 (2001) 204.

Google Scholar

[22] A.A. Nazarov, A.E. Romanov and R.Z. Valiev: Nanostructured Mater 6 (1995) 775.

Google Scholar

[23] S.V. Divinski, J. Ribbe, D. Baither, G. Schmitz, G. Reglitz, H. Rösner, K. Sato, Y. Estrin and G. Wilde: Acta Mater. 57 (2009) 5706.

DOI: 10.1016/j.actamat.2009.07.066

Google Scholar

[24] S.V. Divinski, J. Ribbe, G. Reglitz, Y. Estrin and G. Wilde: J. Appl. Phys. 106 (2009) 063502.

Google Scholar

[25] Y. Amouyal, S.V. Divinski, Y. Estrin and E. Rabkin: Acta Mater. 55 (2007) 5968.

Google Scholar

[26] J. Ribbe, G. Schmitz, Y. Estrin and S.V. Divinski: Defect Diffusion Forum 289-292 (2009) 95.

DOI: 10.4028/www.scientific.net/ddf.289-292.95

Google Scholar

[27] S.V. Divinski and G. Wilde: Mater. Sci. Forum 584-586 (2008) 1012.

Google Scholar

[28] A.H. Cottrell: Trans. Metal. Soc. AIME 212 (1958) 192.

Google Scholar

[29] E.O. Hall: Proc. Phys. Soc. London B 64 (1951) 747.

Google Scholar

[30] N.J. Petch: J. Iron Steel Inst. 25 (1953) 174.

Google Scholar

[31] D. Kiener, M. Rester, S. Scheriau, B. Yang, R. Pippan and G. Dehm: Int. J. Mater. Res. 98 (2007) 1047.

Google Scholar

[32] J.Y. Huang, Y.T. Zhu, H. Jiang and T.C. Lowe: Acta Mater. 49 (2001) 1497.

Google Scholar

[33] G.E. Dieter: Mechanical Metallurgy (3rd ed., McGraw-Hill, New York 1986).

Google Scholar

[34] T. von Karman: Z. Ver. Deutsch. Ing. Forschungsheft 118 (1912) 37.

Google Scholar

[35] K. Lange: Handbook of Metal Forming (Society of Manufacturing Engineers, Michigan, USA 1985).

Google Scholar

[36] A.H. Chokshi, A. Rosen, J. Karch and H. Gleiter: Scr. Metall. 23 (1989) 1679.

Google Scholar

[37] L. Kommel, I. Hussainova and O. Volobueva, Mater. Design 28 (2007) 2121.

Google Scholar

[38] M. Kulczyk, W. Pachla, A. Mazur, M. Sus-Ryszkowska, N. Krasilnikov and K.J. Kurzydlowski: Mater. Sci. Poland 25 (2007) 991.

Google Scholar

[39] X. Molodova, G. Gottstein, M. Winning and R.J. Hellmig, Mater. Sci. Eng. A 460-461 (2007) 204-213.

Google Scholar

[40] G.P. Dinda: Nonequilibrium Processing of Amorphous and Nanostructured Materials (PhD thesis, Saarland University 2006).

Google Scholar

[41] S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin and G. Wilde: Acta Mater. 2010 (submitted).

Google Scholar

[42] M. Peterlechner, T. Waitz and H.P. Karnthaler: Scr. Mater. 60 (2009) 1137.

Google Scholar

[43] Y.H. Zhao, X.L. Liao, Y.T. Zhu, Z. Horita and T.G. Langdon: Mater. Sci. Eng. A 410-411 (2005) 188.

Google Scholar