The Evolution of Homogeneity during Processing of Aluminium Alloys by HPT

Article Preview

Abstract:

Disks of a commercial purity aluminium Al-1050 alloy and Al-1%Mg alloy were processed by high-pressure torsion (HPT) at room temperature for up to a maximum of 5 turns under a pressure of 6 GPa. Following processing, hardness measurements were recorded across the surfaces of the disks. These measurements showed low values of hardness at the center and high values near the edges of the disks and the hardness increased in both alloys with increasing numbers of turns. The evolution of homogeneity in hardness was rapid in Al-1050 compared to the Al-1%Mg alloy. After 5 turns of HPT under a pressure of 6 GPa, the hardness was fully homogeneous across the total surface of the Al-1050 disk whereas there was a region of lower hardness around the center of the Al-1%Mg disk. The results reveal the significant difference between both alloys where the higher rate of recovery in the Al-1050 alloy leads to a rapid evolution of the hardness homogeneity.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

277-282

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci. Vol. 51 (2006), p.881.

Google Scholar

[3] A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci. Vol. 53 (2008), p.893.

Google Scholar

[4] A.P. Zhilyaev, B.K. Kim, G.V. Nurislamova, M.D. Baró, J.A. Szpunar and T.G. Langdon: Scripta Mater. Vol. 46 (2002), p.575.

DOI: 10.1016/s1359-6462(02)00018-0

Google Scholar

[5] A.P. Zhilyaev, G.V. Nurislamova, B.K. Kim, M.D. Baró, J.A. Szpunar and T.G. Langdon: Acta Mater. Vol. 51 (2003), p.753.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[6] A.P. Zhilyaev, B.K. Kim, J.A. Szpunar, M.D. Baró and T.G. Langdon: Mater. Sci. Eng. A Vol. 391 (2005), p.377.

Google Scholar

[7] A. Vorhauer and R. Pippan: Scripta Mater. Vol. 51 (2004), p.921.

Google Scholar

[8] H. Jiang, Y.T. Zhu, D.P. Butt, I.V. Alexandrov and T.C. Lowe: Mater. Sci. Eng. A Vol. 290 (2000), p.128.

Google Scholar

[9] Z. Yang and U. Welzel: Mater. Lett. Vol. 59 (2005), p.3406.

Google Scholar

[10] A.P. Zhilyaev, K. Oh-ishi, T.G. Langdon and T.R. McNelley: Mater. Sci. Eng. A Vol. 410–411 (2005), p.277.

Google Scholar

[11] G. Sakai, Z. Horita and T.G. Langdon: Mater. Sci. Eng. A Vol. 393 (2005), p.344.

Google Scholar

[12] Z. Horita and T.G. Langdon: Mater. Sci. Eng. A Vol. 410–411 (2005), p.422.

Google Scholar

[13] A.P. Zhilyaev, S. Lee, G.V. Nurislamova, R.Z. Valiev and T.G. Langdon: Scripta Mater. Vol. 44 (2001), p.2753.

DOI: 10.1016/s1359-6462(01)00955-1

Google Scholar

[14] C. Xu, Z. Horita and T.G. Langdon: J. Mater. Sci. Vol. 55 (2008), p.203.

Google Scholar

[15] N. Lugo, N. Llorca, J.M. Cabrera and Z. Horita: Mater. Sci. Eng. A Vol. 477 (2008), p.366.

Google Scholar

[16] C. Xu and T.G. Langdon: Mater. Sci. Eng. A Vol. 503 (2009), p.71.

Google Scholar

[17] C. Xu, Z. Horita and T.G. Langdon: Acta Mater. Vol. 55 (2007), p.203.

Google Scholar

[18] C. Xu, M. Furukawa, Z. Horita and T.G. Langdon: Mater. Sci. Eng. A Vol. 398 (2005), p.66.

Google Scholar

[19] C. Xu, K. Xia and T.G. Langdon: Acta Mater. Vol. 55 (2007), p.2351.

Google Scholar

[20] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Metall. Mater. Trans. A Vol. 29 (1998), p.2503.

Google Scholar