Enhanced Thermal Stability and Mechanical Properties of Ultrafine-Grained Aluminum Alloy

Abstract:

Article Preview

The paper reports on microstructure, strength and fatigue of ultrafine-grained (UFG) samples of the Al-Cu-Mg-Si aluminum alloy processed by high pressure torsion (HPT) at various temperatures. Application of the HPT treatment led to strong grain refinement, as well as to a raise of the mean-root square strains and dynamic precipitation. In case of optimal HPT treatment the UFG samples have demonstrated the enhanced thermal stability, an increase in ultimate tensile strength in 2.5 times and enhancement in fatigue endurance limit by 20 % in comparison with coarse-grained alloy subjected to standard treatment. It is shown that the regime of the HPT treatment governs the volume fraction of precipitates and segregations, thereby affecting a grain size and thermal stability of ultrafine-grained structure.

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Edited by:

Jing Tao Wang, Roberto B. Figueiredo and Terence G. Langdon

Pages:

331-336

DOI:

10.4028/www.scientific.net/MSF.667-669.331

Citation:

R. K. Islamgaliev et al., "Enhanced Thermal Stability and Mechanical Properties of Ultrafine-Grained Aluminum Alloy", Materials Science Forum, Vols. 667-669, pp. 331-336, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.