Microstructures and Mechanical Properties of Pure Titanium by Dynamic Plastic Deformation

Abstract:

Article Preview

Dynamic plastic deformation of commercially pure titanium in the temperature range of -100-18°C at the strain rates of 3.0×102-2.5×103, as well as at quasi-static compression were carried out by a Split Hopkinson Pressure Bar technique and conventional compression testing machine respectively. The formation of deformation twins plays a key role on the accommodation of a large amount of strain produced by plastic deformation. Grain orientation has a great influence on the formation of twins. Temperature has smaller effects than strain rate on the evolutions of the microstructures and mechanical properties. The area fraction of twins and their intersections increase with the increasing strain rate and the deformation strain, resulting in refined microstructures and higher hardness values. Strain rate also leads to the change of twin shape (type). While more lenticular twins are observed in samples after quasi-static deformation, there are lots of needle-like twins with straight and long boundaries in samples processed via dynamic plastic deformation. This may imply that different twin systems operate at different strain rate. For the needle-like twins in samples after dynamic plastic deformation, the twin area fraction approaches saturation beyond the true strain of about 0.13, which is significant turning point for twinning rate. This saturated trend is not observed in quasi-static deformation.

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Edited by:

Jing Tao Wang, Roberto B. Figueiredo and Terence G. Langdon

Pages:

337-342

DOI:

10.4028/www.scientific.net/MSF.667-669.337

Citation:

J. L. Sun and J. T. Wang, "Microstructures and Mechanical Properties of Pure Titanium by Dynamic Plastic Deformation", Materials Science Forum, Vols. 667-669, pp. 337-342, 2011

Online since:

December 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.