Martensitic Transformation from Ultrafine Grained Austenite Fabricated by ARB in Fe-24Ni-0.3C

Article Preview

Abstract:

In this paper, martensitic transformation from ultrafine grained (UFG) austenite fabricated by accumulative roll bonding (ARB) process in a metastable austenite alloy was studied. Microstructural observations and crystallographic analysis were carried out by FE-SEM/EBSD. The results showed that elongated UFG austenite having 200-300 nm in thickness surrounded by high angle boundaries was obtained after 6 cycles of the ARB process. The martensite transformed from the UFG austenite showed characteristic morphology and texture. The martensite transformation starting (Ms) temperature increased after 1 cycle ARB, which is related to increasing amount of nucleation sites, such as low angle boundaries, introduced during early stage of ARB process. In contrast, by increasing the ARB cycles, Ms temperature decreased. Decreasing the Ms temperature could be correlated to strengthening of austenite by the ARB process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

361-366

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] KS. Kumar, H. Van Swygenhoven and S. Suresh: Acta Mater. Vol. 51 (2003), p.5743.

Google Scholar

[2] RZ. Valiev, RK. Islamgaliev and IV. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[3] A. Shibata, S. Morito, T. Furuhara and T. Maki: Acta Mater. Vol. 57 (2009), p.483.

Google Scholar

[4] A. Shibata, S. Morito, T. Furuhara and T. Maki: Scripta Mater. Vol. 53 (2005), p.597.

Google Scholar

[5] H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino: Acta Mater. Vol. 54 (2006), p.1279.

Google Scholar

[6] H. Kitahara, R. Ueji, M. Ueda, N. Tsuji and Y. Minamino: Mater. Charact. Vol. 54 (2005), p.378.

Google Scholar

[7] N. Tsuji: J. of Nanosci. and nanotech. Vol. 7 (2007), p.3770.

Google Scholar

[8] DH. Shin, BC. Kim, K. Park, Y-S. Kim and K. Park: Acta Mater. Vol. 48 (2000), p.2247.

Google Scholar

[9] Z. Horita, D. Smith, M. Furukawa, M. Nemoto, RZ. Valiev and TG. Langdon: J. of Mater. Res. Vol. 11 (1996), p.1880.

Google Scholar

[10] A. Belyakov, Y. Sakai, T. Hara, Y. Kimura and K. Tsuzaki: Metall. Mater. Trans. Vol. 32A (2001), p.1769.

Google Scholar

[11] H. Kitahara, N. Tsuji and Y. Minamino: Mater. Sci. and Eng. A Vol. 438–440 (2006), p.233.

Google Scholar

[12] H. Jafarian, E. Borhani, A. Shibata, D. Terada and N. Tsuji: submitted to Journal of Materials Science (2010).

Google Scholar

[13] N. Tsuji, R. Ueji, Y. Ito and Y. Saito: Proc. of the 21st Risø Int. Symp. on Mater. Sci., edited by N. Hansen, X. Huang, D. Juul Jensen, E.M. Lauridsen, T. Leffers, W. Pantleon, T.J. Sabin and J.A. Wert, Risø National Laboratory, (2000), p.607.

Google Scholar

[14] X. Huang, N. Tsuji, Y. Minamino and N. Hansen: Proc. of the 22nd Risø Int. Symp. on Mater. Sci., edited by A. Dinesen, M. Eldrup, D. Juul Jensen, S. Linderoth, T.B. Pederson, N.H. Pryds, A. Schroder Pedersen and J.A. Wert, Risø National Laboratory, Denmark, (2001).

Google Scholar

[15] X. Huang, N. Tsuji, N. Hansen and Y. Minamino: Mater. Sci. and Eng. A Vol. 423 (2002), p.331.

Google Scholar

[16] DH. Shin, Y-S. Kim and EJ. Lavernia: Acta Mater. Vol. 49 (2001), p.2387.

Google Scholar