Influence of Stacking Fault Energy on the Microstructures and Grain Refinement in the Cu-Al Alloys during Equal-Channel Angular Pressing

Article Preview

Abstract:

The microstructural evolution and grain refinement of Cu-Al alloys with different stacking fault energies (SFEs) processed by equal-channel angular pressing (ECAP) were investigated. The grain refinement mechanism was gradually transformed from dislocation subdivision to twin fragmentation with tailoring the SFE of Cu-Al alloys. Concurrent with the transition of grain refinement mechanism, the grain size can be refined into from ultrafine region (1 m~100 nm) to the nanoscale (<100 nm) and then it is found that the minimum equilibrium grain size decreases in a roughly linear way with lowering the SFE. Moreover, in combination with the previous results, it is proposed that the formation of a uniform ultrafine microstructure can be formed more readily in the materials with high SFE due to their high recovery rate of dislocations and in the materials with low SFE due to the easy formation of a homogeneously-twinned microstructure.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 667-669)

Pages:

379-384

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci. Vol. 51 (2006), p.881.

Google Scholar

[3] A.P. Zhilyaev and T.G. Langdon: Prog. Mater. Sci. Vol. 53 (2008), p.893.

Google Scholar

[4] Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon: Acta Mater. Vol. 45 (1997), p.4733.

Google Scholar

[5] S. Komura, Z. Horita, M. Nemoto and T.G. Langdon: J. Mater. Res. Vol. 14 (1999), p.4044.

Google Scholar

[6] F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies and E.V. Pereloma: Acta Mater. Vol. 52 (2004), p.4819.

DOI: 10.1016/j.actamat.2004.06.040

Google Scholar

[7] W.Z. Han, H.J. Yang, X.H. An, R.Q. Yang, S.X. Li, S.D. Wu and Z.F. Zhang: Acta Mater. Vol. 57 (2009), p.1132.

Google Scholar

[8] A.P. Zhilyaev, B.K. Kim, J.A. Szpunar, M.D. Baró and T.G. Langdon: Mater. Sci. Eng. A Vol. 391 (2005), p.377.

Google Scholar

[9] S. Qu, X.H. An, H.J. Yang, C. X Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu and Z.F. Zhang: Acta Mater. Vol. 57 (2009), p.1586.

Google Scholar

[10] X.H. An, W.Z. Han, C. X Huang, P. Zhang, G. Yang, S.D. Wu and Z.F. Zhang: Appl. Phys. Lett. Vol. 92 (2008), p.201915.

Google Scholar

[11] X.H. An, Q.Y. Lin, S.D. Wu and Z.F. Zhang: Mater. Sci. Eng. A Vol. 527 (2010), p.4510.

Google Scholar

[12] X.H. An, Q.Y. Lin, S. Qu, G. Yang, S.D. Wu and Z.F. Zhang: J. Mater. Res. Vol 24 (2009), p.3636.

Google Scholar

[13] J. Gubicza, N. Q. Chinh, J.L. Labar, Z. Hegedus, C. Xu and T.G. Langdon: Scripta Mater. Vol. 58 (2008), p.775.

Google Scholar

[14] A.V. Nagasekhar, T. Rajkumar, D. Stephan, Y. Tick-Hon and R.K. Guduru: Mater. Sci. Eng. A Vol. 524 (2009), p.204.

Google Scholar

[15] S.D. Wu, X.H. An, W.Z. Han, S. Qu and Z.F. Zhang: Acta Mater. Sin. Vol. 46 (2010), p.257.

Google Scholar