[1]
W.D. Jones, Fundamental Principles of Powder Metallurgy, E. Arnold Publisher, London (1960).
Google Scholar
[2]
C.A. Kelto, B.A. Kosmal, D. Eylon, F.H. Froes, Titanium Powder Metallurgy – A Perspective", In Proceeding of Symposium "Powder Metallurgy of Titanium Alloys, (The Metallurgical Society of AIME (1980).
DOI: 10.1007/bf03354494
Google Scholar
[3]
M. Hagiwara, S.J. Kim, S. Emura, Blended Elemental P/M Synthesis of Ti-6Al-1. 7Fe-0. 1Si Alloy with Improved High Cycle Fatigue Strength, Scripta Materialia, 39: 9 (1998) 1185 - 1190.
DOI: 10.1016/s1359-6462(98)00310-8
Google Scholar
[4]
Matthew J. Danachie, Jr., Titanium. A Technical Guide, Second Edition, (ASM International, Ohio 2000), 380.
Google Scholar
[5]
C. Zubizarreta, S. Giménez, J.M. Martín, I. Iturriza, Effect of the heat treatment prior to extrusion on the direct hot-extrusion of aluminium powder compacts, Journal of Alloys and Compounds, 467: 1-2 (2009) 191-201.
DOI: 10.1016/j.jallcom.2007.12.035
Google Scholar
[6]
M. Galanty, P. Kazanowski, P. Kansuwan, W.Z. Misiolek, Consolidation of metal powders during the extrusion process, Journal of Materials Processing Technology, 125-126 (2002).
DOI: 10.1016/s0924-0136(02)00327-8
Google Scholar
[7]
J. Zasadzinski, J. Richert, W. Libura, Structure and properties of P/M materials formed in a new method without sintering, Advances in Powder Metallurgy, 4 (1992) 353-362.
Google Scholar
[8]
K. Kondoch, T. Luangvaranunt, R. Tsuzuki, S. Kamado, Microstructure controlled magnesium alloys via cyclically repeated plastic working, Magnesium Technology (2004), 257-262.
Google Scholar
[9]
V. Varyukhin, Y. Beygelzimer, V. Tkatch, V. Maslov, S. Synkov, A. Synkov, V. Nosenko, Consolidation of bulk nanomaterials by twist extrusion of powders, TMS Annual Meeting: Ultrafine Grained Materials IV (2006) 125-130.
DOI: 10.1016/j.msea.2006.03.081
Google Scholar
[10]
A.P. Shpak, V.N. Varyukhin, V.I. Tkatch, V.V. Maslov, Y.Y. Beygelzimer, S.G. Synkov, V.K. Nosenko, S.G. Rassolov, Nanostructured Al86Gd6Ni6Co2 bulk alloy produced by twist extrusion of amorphous melt-spun ribbons, Materials Science and Engineering A, 425: 1-2 (2006).
DOI: 10.1016/j.msea.2006.03.081
Google Scholar
[11]
M. Moss, R. Lapovok, C.J. Bettles, The equal channel angular pressing of magnesium and magnesium alloy powders, JOM, 59: 8 (2007) 54-57.
DOI: 10.1007/s11837-007-0105-5
Google Scholar
[12]
R. Lapovok, D. Tomus, C.J. Bettles, Shear deformation with imposed hydrostatic pressure for enhanced compaction of powder, Scripta Materialia, 58: 10 (2008) 898-901.
DOI: 10.1016/j.scriptamat.2008.01.010
Google Scholar
[13]
H.S. Kim, M.H. Seo, C.S. Oh, S.J. Kim, Equal Channel Angular Pressing of Metallic Powders, Materials Science Forum: Advanced Materials Processing II, 437-438 (2003) 89-92.
DOI: 10.4028/www.scientific.net/msf.437-438.89
Google Scholar
[14]
K. Biswas, Comparison of various plasticity models for metal powder compaction processes, Journal of Materials Processing Technology, 166: 1 (2005) 107-115.
DOI: 10.1016/j.jmatprotec.2004.08.006
Google Scholar
[15]
S.M. Doraivelu, H.L. Gegel, J.S. Gunasekera, J.C. Malas, J.T. Morgan, J.F. Thomas, Int. J. Mech. Sci. 26 (1984) 527-535.
DOI: 10.1016/0020-7403(84)90006-7
Google Scholar
[16]
Scientific Forming Technologies Corporation. DEFORM2D, http: /www. deform. com.
Google Scholar