Two-Degree-of-Freedom Control of an Ionic Polymer-Metal Composite Actuator

Article Preview

Abstract:

Mathematical models predicting the behaviour of IMPCs (Ionic Polymer-Metal Composites ) were built and their validity was verified computationally as well as experimentally. A transfer function associating the applied input voltage with the IPMC tip displacement was derived based on results obtained by vibration analysis. Employing the derived transfer function, three mathematical models, based on feed forward, feedback and two-degree-of-freedom models, were formulated. Computational and experimental verification of these models revealed that the feedback and two-degree-of-freedom models were capable of high performance in controlling the bending of an IPMC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

369-378

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Asaka, N. Mori, K. Hayashi, Y. Nakabo, T. Mukai and Z. W. Luo, Modeling of electromechanical response of ionic polymer metal composites (IPMC), Proc. SPIE Smart Mater. Struct., San Diego, 5385, pp.172-181, (2004).

DOI: 10.1117/12.539090

Google Scholar

[2] K. Asaka, K. Oguro, Y. Nishimura, M. Mizuhara and H. Takenaka, Bending of polyelectrolyte membrane-platinum composites by electric stimuli I, response characteristics to various waveforms, Polym. J., 27, pp.436-440, (1995).

DOI: 10.1295/polymj.27.436

Google Scholar

[3] Y. Bar-Cohen and S. Leary, Electroactive polymer (EAP) characterization method, Proc. SPIE Smart Mater. Struct., Newport Beach CA, 3987, pp.12-16, (2000).

Google Scholar

[4] Y. Bar-Cohen, T. Xue, M. Shahinpoor, K. Salehpoor, J. Simpson and J. Smith, Low-mass muscle actuators using electroactive polymers (EAP), Proc. SPIE Smart Mater. Struct., San Diego, 3324, pp.218-223, (1998).

DOI: 10.1117/12.316866

Google Scholar

[5] K. Iwamoto, G. Tuji, S. Yoshida and M. Seno, Bending behavior of bipolar membranes having a weakly acidic cation exchange membrane, Chem. Soc. Jpn., pp.425-429, (1997).

DOI: 10.1246/nikkashi.1997.425

Google Scholar

[6] V. K. Nguyen, J. W. Lee and Y. Yoo, Characteristics and performance of ionic polymer-metal composite actuators based on Nafion/layered silicate and Nafion/silica nanocomposites, Sens. Actuators B Chem., 120, pp.529-537, (2006).

DOI: 10.1016/j.snb.2006.03.015

Google Scholar

[7] K. Oguro, K. Asaka and H. Takenaka, Polymer film actuator driven by a low voltage, Proc. Fourth Internat. Symp. on Micromachine and Human Sci., Nagoya Japan, pp.39-40, (1993).

Google Scholar

[8] K. Oguro, N. Fujiwara, K. Asaka, K. Onishi and S. Sewa, Polymer electrolyte actuator wit gold electrodes, Proc. SPIE Smart Mater. Struct., Newport Beach CA, 3669, pp.64-71, (1999).

DOI: 10.1117/12.349698

Google Scholar

[9] K. Oguro, Y. Kawami and H. Takenaka, Bending of an ion-conducting polymer film-electrode composite by an electric stimulus at low voltage, Trans. J. Micromach. Soc., 5, pp.27-30, (1992).

Google Scholar

[10] S. Popovic, Design of electro-active polymer gels as actuator materials, Ph. D Dissertation, University of Washington, (2001).

Google Scholar

[11] K. Salehpoor, M. Shahinpoor and M. Mojarrad, Actuators made from ion exchange membrane-metal composites, smart materials technologies, Proc. SPIE Smart Mater. Struct., San Diego, 3040, pp.192-198, (1997).

DOI: 10.1117/12.267128

Google Scholar

[12] M. Shahinpoor and K. J. Kim, Ionic polymer-metal composites: I. Fundamentals, Smart Mater. Struct., 10, pp.819-833, (2001).

DOI: 10.1088/0964-1726/10/4/327

Google Scholar

[13] M. Shahinpoor, M. Mojarrad and K. Salehpoor, Electrically induced large amplitude vibration and resonance characteristics of ionic polymeric membrane-metal composite artificial muscles, Proc. SPIE Smart Mater. Struct., San Diego, 3041, pp.829-838, (1997).

DOI: 10.1117/12.275707

Google Scholar

[14] M. Le Guilly, C. Xu, V. Cheng, M. Taya, L. Opperman and Y. Kuga, Flemion based actuator for mechanically controlled microwave switch, Proc. SPIE Smart Mater. Struct., San Diego, 5051, pp.362-371, (2003).

DOI: 10.1117/12.484402

Google Scholar

[15] Y. Onouchi, M. Sasaki and H. Tamagawa, Current-controlled Selemion bending in the controlled humidity environment, Sens. Actuators B Chem., 135, pp.465-471, (2009).

DOI: 10.1016/j.snb.2008.10.025

Google Scholar

[16] H. Tamagawa, S. Goto and T. Sugiyama, Bending direction of Ag-plated IPMC containing immobile anions and/or cations, Composites Science and Technology, 68, pp.3412-3417, (2008).

DOI: 10.1016/j.compscitech.2008.09.031

Google Scholar

[17] H. Tamagawa and F. Nogata, Bending response of dehydrated ion exchange polymer membranes to the applied voltage, J. Membrane Sci., 243, pp.229-234, (2004).

DOI: 10.1016/j.memsci.2004.06.024

Google Scholar

[18] H. Tamagawa and F. Nogata, Dominant factor for the precise bending control of Selemion, Sens. Actuators B Chem., 120, pp.19-24, (2006).

DOI: 10.1016/j.snb.2006.01.036

Google Scholar

[19] H. Tamagawa and F. Nogata, Atomic structural change of silver-plating layers on the surfaces of Selemion, resulting in its excellent bending controllability, Sens. Actuators B Chem., 114, pp.781-787, (2007).

DOI: 10.1016/j.snb.2005.07.043

Google Scholar

[20] H. Tamagawa and F. Nogata, Charge and water in need for the precise control of Selemion bending, Sens. Actuators B Chem., 121, pp.469-475, (2007).

DOI: 10.1016/j.snb.2006.04.072

Google Scholar

[21] H. Tamagawa, F. Nogata and S. Popovic, Roles of Ag redox reaction and water absorption inducing the Selemion bending, J. Membrane Sci., 25, pp.145-150.

DOI: 10.1016/j.memsci.2004.11.010

Google Scholar

[22] H. Tamagawa, F. Nogata and M. Sasaki, Charge quantity as a sole factor quantitatively governing curvature of Selemion, Sens. Actuators B Chem., 124, pp.6-11, (2007).

DOI: 10.1016/j.snb.2006.11.038

Google Scholar

[23] H. Tamagawa, H. Watanabe and M. Sasaki, Bending direction change of IPMC by the electrode modification, Sens. Actuators B Chem., 140, pp.542-548, (2009).

DOI: 10.1016/j.snb.2009.04.054

Google Scholar