Flexible AC Transmission System Controllers: An Evaluation

Article Preview

Abstract:

Electricity market activities and a growing demand for electricity have led to heavily stressed power systems. This requires operation of the networks closer to their stability limits. Cost effective solutions are preferred over network extensions. The flexible alternating current transmission system (FACTS), a new technology based on power electronics, offers an opportunity to enhance controllability, stability, and power transfer capability of ac transmission systems. This paper provides a comprehensive review and evaluation of FACTS controllers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

399-406

Citation:

Online since:

December 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. G. Hingorani, Proceedings of the IEEE 76(4), 481 (1988).

Google Scholar

[2] L. Gyugyi, IEE Proceedings C, Generation, Transmission and Distribution 139(4), 323 (1992).

Google Scholar

[3] N. G. Hingorani, IEEE Spectrum 30(4), 40 (1993).

Google Scholar

[4] N. G. Hingorani, L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE, New York, (2000).

Google Scholar

[5] Y. -H. Song, T. A. Johns, Flexible AC Transmission Systems (FACTS), IEE, London, (2000).

Google Scholar

[6] S. Zelingher, B. Fardanesh, B. Shperling, S. Dave, L. Kovalsky, C. Schauder, A. Edris, Proc. of IEEE PES Winter Meeting, 2511 (2000).

DOI: 10.1109/pesw.2000.847206

Google Scholar

[7] S. N. Singh, International Journal of Energy Technology and Policy 4(3-4), 236 (2006).

Google Scholar

[8] L. Gyugyi, IEEE Transactions on Power Delivery 9(2), 904 (1994).

Google Scholar

[9] L. Gyugyi, N. G. Hingorani, P. R. Nannery, N. Tai, CIGRE Paper 23-203, Paris (1990).

Google Scholar

[10] K. R. Padiyar, A. M. Kulkarni, Sãdhanã 22(6), 781 (1997).

Google Scholar

[11] L. Gyugyi, IEEE Transactions on Industry Applications 15(5), 521 (1979).

Google Scholar

[12] L. Gyugyi, Proceedings of the IEEE 76(4), 483 (1988).

Google Scholar

[13] T. J. E. Miller, Reactive Power Control in Electric Systems, Wiley, New York, (1982).

Google Scholar

[14] S. Jalali, I. Dobson, R. H. Lasseter, G. Venkataramanan, IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications 43(3), 209 (1996).

DOI: 10.1109/81.486445

Google Scholar

[15] A. -A. Edris, R. Adapa, M. H. Baker, L. Bohmann, K. Clark, K. Habashi, L. Gyugyi, J. Lemay, A. S. Mehraban, A. K. Myers, J. Reeve, F. Sener, D. R. Torgerson, R. R. Wood, IEEE Transactions on Power Delivery 12(4), 1848 (1997).

Google Scholar

[16] A. Rubaai, A. R. Ofoli, D. Cobbinah, M. D. Kankam, IEEE Transactions on Industry Applications 41(6), 1539 (2005).

DOI: 10.1109/tia.2005.857465

Google Scholar

[17] L. Gyugyi, C. D. Schauder, K. K. Sen, IEEE Transactions on Power Delivery 12(1), 406 (1997).

Google Scholar

[18] N. Christl, R. Hedin, K. Sadek, P. Lutzelherger, P. E. Krause, S. M. McKenna, A. H. Montoya, D. Torgerson, CIGRE Paper 14/37/38-05, Paris (1992).

Google Scholar

[19] A. J. F. Kari, R. A. Byron, B. J. War, A. S. Mehraban, M. Chamia, P. Halvarsson, L. Angquist, CIGRE Paper 14/37/38-07, Paris (1992).

Google Scholar

[20] S. Nyatti, M. E. Eitzmann, J. Kappenman, D. Van House, N. Mohan, A. Edris, IEEE Transactions on Power Delivery 10(4), 2013 (1995).

Google Scholar

[21] B. Ardanesh, B. Shperling, E. Uzunovic, S. Zelingher, Proc. of IEEE PES Summer Meeting, 1020 (2000).

Google Scholar

[22] X. -P. Zhang, E. Handschin, M. Yao, IEEE Transactions on Power Systems 16(3), 367 (2001).

Google Scholar

[23] L. Matakas Jr., E. Masada, Proc. of 5th European Conference on Electrical Power and Application, 35 (1993).

Google Scholar

[24] J. G. Singh, V. Pant, S. N. Singh, Iranian Journal of Electrical and Computer Engineering 3(2), 103 (2004).

Google Scholar

[25] J. Brochu, P. Pelletier, F. Beauregard, G. Morin, IEEE Transactions on Power Delivery 9(2), 833 (1994).

Google Scholar

[26] K. Habashi, J. -J. Lombard, S. Mourad, P. Pelletier, G. Morin, F. Beauregard, J. Brochu, IEEE Transactions on Power Delivery 9(2), 1041 (1994).

DOI: 10.1109/61.296289

Google Scholar

[27] F. Beauregard, J. Brochu, G. Morin, P. Pelletier, IEEE Transactions on Power Delivery 9(4), 1956 (1994).

Google Scholar

[28] J. Brochu, F. Beauregard, G. Morin, P. Pelletier, IEEE Transactions on Power Delivery 10(2), 961 (1995).

DOI: 10.1109/61.400833

Google Scholar

[29] G. Sybille, Y. Haj-Maharsi, G. Morin, F. Beauregard, J. Brochu, J. Lemay, P. Pelletier, IEEE Transactions on Power Delivery 11(4), 1985 (1996).

DOI: 10.1109/61.544285

Google Scholar

[30] J. Brochu, F. Beauregard, J. Lemay, G. Morin, P. Pelletier, R. S. Thallam, IEEE Transactions on Power Delivery 12(2), 888 (1997).

DOI: 10.1109/61.584409

Google Scholar

[31] J. Brochu, F. Beauregard, G. Morin, J. Lemay, P. Pelletier, S. Kheir, IEEE Transactions on Power Delivery 13(1), 233 (1998).

DOI: 10.1109/61.660883

Google Scholar

[32] A. S. Abdel-Karim, A. I. Taalab, A. E. Lashine, Electric Machines and Power Systems 16(4), 225 (1989).

DOI: 10.1080/07313568908909380

Google Scholar

[33] L. Gyugyi, K. K. Sen, C. D. Schauder, IEEE Transactions on Power Delivery 14(3), 1115 (1999).

Google Scholar

[34] P. Moore, P. Ashmole, Power Engineering Journal 9(6), 282 (1995).

Google Scholar

[35] E. Acha, C. R. Fuerte-Esquivel, H. Ambriz-Pérez, C. Angeles-Camacho, FACTS: Modelling and Simulation in Power Networks, Wiley, Chichester, (2004).

DOI: 10.1002/0470020164

Google Scholar