Dynamic Study of Adsorption for the Removal of Bismark Brown – Using Activated Carbons

Article Preview

Abstract:

Many industries use dyes and pigments to colorize their products. Large amount different types of dyes enter in to the environment. These dyes are invariably left in the industrial wastes. As a part of removal of Bismark Brown dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage removal of Bismark-Brown adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbent. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data with Freundlich and Langmuir isotherm models. The first kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra-particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and Bismark-brown (BB) is particular. These results are reported highly efficient and effective and low cost adsorbent for the BB. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM analyze.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-204

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.R. Krishnan, P.W. Utrecht, A.N. Patkar, J.S. Davis, S.G. Pour and M.E. Foerst, Recovery of Metals from Sludges and Wastewaters, Noyes Data, Park Ridge, NJ (1993).

Google Scholar

[2] Y.C. Wong, Y.S. Szeto, W.H. Cheung and G. Mc Kay, Adsorption of acid dyes on chitosan –equilibrium isotherm analyses. Process Biochem., 39 (2004), 693-702.

DOI: 10.1016/s0032-9592(03)00152-3

Google Scholar

[3] W. Brooke-Devlin, Mercury and arsenic wastes removal, Recovery, Treatment and Disposal, US Environmental Protection Agency, Noyes Data, Park, Ridge, NJ (1992).

Google Scholar

[4] J. M Grau and J.M. Bisang, J. Chem. Technol. Biotechnol. 62 (1995), p.153.

Google Scholar

[5] D.E. Beck, W.D. Bostick, K. Bowser, D.H. Bunch, R.L. Fellows, P.E. Osborne and G.F. Sellers, Presented at the Ninth Symposium on Separation Science and Technology for Energy Applications, Gatlinburg, TN (1995).

Google Scholar

[6] Mc Kay G. Adsorption of dyestuffs from aqueous solutions with activated carbon, part-I, equilibrium and batch contact time studies. J Chem Technol Biotechnol (1982) 32: 759-772.

DOI: 10.1002/jctb.5030320712

Google Scholar

[7] Mc Kay G. Waste colour removal from textile effluents. Am Dyestuff Rep (1979) 68: 29-34.

Google Scholar

[8] Nigarn P, Banat LM, Singh D, Marchant R. Microbial process for decolourisation of textile effluents containing azo, diazo and reactive dyes. Process Biochem (1996), 31: 435-442.

DOI: 10.1016/0032-9592(95)00085-2

Google Scholar

[9] Bhattacharya AK, Venkobatcher C. Removal of cadmium (11) by low cost adsorbents. J Environ Eng ASCE (1984), 110: 110-122.

DOI: 10.1061/(asce)0733-9372(1984)110:1(110)

Google Scholar

[10] H.L.R. Yeh, L.H.R. Liu, H.M. Chiu, Y.T. Hung, Int.J. Environ. stud. 44 (1993), p.259.

Google Scholar

[11] K.K. Mitsui Cyanamid, Jpn. Patent Appl. 193, 846 (1985).

Google Scholar

[12] Y. Baba, K. Inoue, K. Yoshizuka, Y. Ritzu, T. Masato, Jpn. Kokai, Koyyo, Koho, JP 04, 164, 817(1992).

Google Scholar

[13] M. Grayson, Kirk–Othmer Encylopedia of Chemical Technology, vol. 15, third ed., New York, 1981, p.143.

Google Scholar

[14] A. Junker-Buchheit and J. Witzenbacher, J. Chromatogr. A 737 (1996), p.67.

Google Scholar

[15] K. Pyrzynska and M. Trozanowicz, Crit. Rev. Anal. Chem. 29 (1999), p.313.

Google Scholar

[16] J. Mary Gladis, C.R. Preetha and T. Prasada Rao, Met. News 20 (2002), p.14.

Google Scholar

[17] T. Prasada Rao and C.R. Preetha, Sep. Purif. Rev. 32 (2003), p.1.

Google Scholar

[18] A. Alexandrova and S. Arpadjan, Analyst 118 (1993), p.1309.

Google Scholar

[19] H.A.M. Elmahadi and G.M. Greenway, J. Anal. At. Spectrom. 8 (1993), p.1011.

Google Scholar

[20] G.J. Ramelow, L. Liu, C. Himel, D. Fralick, Y. Zhao and C. Tong, Int. J. Environ. Anal. Chem. 53 (1993), p.219.

Google Scholar

[21] H. Emteborg, D.C. Baxter, M. Sharp and W. Frech, Analyst 120 (1995), p.69.

Google Scholar

[22] I. Abd-El-Thalouth, M.M. Kamel, K. Haggag, M. El-Zawahry, Am. Dyestuff Reporter 36, (July 1993).

Google Scholar

[23] J.A. Laszlo, Am. Dyestuff Reporter 17 (August 1994).

Google Scholar

[24] L.C. Morais, E.P. Goncalves, L.T. Vasconcelos, C.G. Gonzalez Beca, Environ. Technol. 21 (2000) 577.

Google Scholar

[25] A. Alexandrova and S. Arpodjan, Anal. Chim. Acta 307 (1995), p.71.

Google Scholar

[26] S. Peraniemi and M. Ahlgren, Anal. Chim. Acta 302 (1995), p.89.

Google Scholar

[27] R. Shah and S. Devi, React. Funct. Polym. 31 (1996), p.1.

Google Scholar

[28] S. Arpodjan, L. Vuchkova and E. Kostadinova, Analyst 122 (1997), p.243.

Google Scholar

[29] M.L. Wang, G.Q. Huange, S.H. Qian, J.S. Jiang, Y.T. Van and Y.K. Chan, Fresnius J. Anal. Chem. 358 (1997), p.856.

Google Scholar

[30] P.C. Rudner, J.M.C. Pavon, F.S. Rojas and A.G. Deforres, J. Anal. At. Spectrom. 13 (1998), p.1167.

Google Scholar

[31] J.L. Manzoori, M.H. Sorouraddin and A.M.H. Shabani, J. Anal. At. Spectrom. 13 (1998), p.305.

Google Scholar

[32] M.E. Mahmoud, M.M. Osman and M.E. Amar, Anal. Chim. Acta 415 (2000), p.33.

Google Scholar

[33] B.C. Monda, D. Das and A.K. Das, Anal. Chim. Acta 450 (2001), p.223.

Google Scholar

[34] M. Shamsipur, A. Ghiagvand and A. Sharghi, Int. J. Environ. Anal. Chem. 82 (2002), p.23.

Google Scholar

[35] M. Bouyanne, J. Svie and I.A. Voinovitch, Analysis 7 (1979), p.62.

Google Scholar

[36] H. Koshima and H. Onishi, Talanta 27 (1980), p.795.

Google Scholar

[37] S. Nagatsuka and Y. Taniazaki, Radioisotopes 27 (1978), p.379.

Google Scholar

[38] M.A.H. Hafez, I.M.M. Kanawaz, M.A. Akl and R.R. Lashein, Talanta 53 (2001), p.749.

Google Scholar

[39] N. Malcick, O. Oktar, M.E. Ozcer, P. Cagler, L. Bushloy, A. Vaughan, B. Kuswadi and R. Narayanaswamy, Sens. Actuators B 53 (1998), p.211.

Google Scholar

[40] T.V. Ramakrishna, G. Aravamudan and M. Vijayakumar, Anal. Chim. Acta 84 (1976), p.369.

Google Scholar

[41] A.I. Vogel, A Textbook of Quantitative Inorganic Analysis, The ELBS & Longmans Green & Co. Limited, (1962).

Google Scholar

[42] R. Mathew, A.M. Starvin and T. Prasada Rao, Ind. J. Chem. 43 A (2004), p.569.

Google Scholar