Magnetic Nanotubes as an Element in Biocomposites

Article Preview

Abstract:

In this work magnetic nanorods have been synthesized by electrodeposition inside the nanotubes fixed to anodic alumina oxide (AAO). The used templates have the pore diameter of 120 nm. In the first step different combinations of 3d elements oxide nanotubes such as: CoO, NiO, NiFe2O4, CoFe2O4 and Fe3O4, have been successfully fabricated inside the nanopores by wetting chemical deposition followed by thermal decomposition. Oxide/Fe, wires were obtained in the next step by electrodeposition The morphology of obtained structures were studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The magnetic properties of the nanostructures were determined on the base of behavior of the structures in external magnetic field. Local magnetic moment orientation is not strictly determined up to now. The potential biological application as an enzyme carrier was tested.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

231-237

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Fayman, Engineering and Science, Caltech, February (1960).

Google Scholar

[2] O. Ersen, S. Begin, M. Houlle, J. Amadou, I. Janowska, J-M. Greneche, C. Crucifix, C. Pham-Huu, Nano Lett. 8 (2008) 1033.

Google Scholar

[3] Cobden DH (2001) Nature 409: 32; 2. Cui Y, Lieber CM (2001) Science 291: 851; 3. Prinz GA (1998) Science 282: 1660.

Google Scholar

[4] Schmid G, Chi LF (1998) Adv Mater 10: 515; 5. Martin, C. R.; Kohli, P. Nat. ReV. Drug DiscoVery 2003, 2, 29.

Google Scholar

[5] Y. C. Wang, J. Ding, J.B. Yi, B. H. Liu, T. Yu, Z.X. Shen; Appl. Phys. Lett. 84 (2004) 2596.

Google Scholar

[6] D. Magnin, V. Callegari, S. Matefi-Tempfli, M. Matefi-tempfli, K. Glinel, A.M. Jonas, S. Demoustier-Champagne ; Biomacromolecules 9 (2008) 2517.

DOI: 10.1021/bm8005402

Google Scholar

[7] S.J. Son, J. Reichel, B. He, M. Schuchman, S.B. Lee, J. Amer. Chem. Soc. 127 (2005) 7316.

Google Scholar

[8] B. Wildt, P. Mali, P. C. Searson; Langmuir 22 (2006) 10528.

Google Scholar

[9] L.A. Bauer, N.S. Birenbaum, G.J. Meyer, Materials Chemistry 14 (2004) 517.

Google Scholar

[10] Huang, Y.; Nan, A.; Rosen, G. M.; Winaiski, C. S.; Schneider, E.; Isai,; P.; Ghandehari, H. Macromol. Biosci. 2003, 3, 647.

Google Scholar

[11] Bucak, S.; Jones, D. A.; Laibinis, P. E.; Hatton, T. A. Biotechnol. Prog. 2003, 19, 477.

Google Scholar

[12] B. Kalska-Szostko, E. Brancewicz, W. Olszewski, K. Szymański, A. Sidor, J. Szeklo, P. Mazalski, Solid State Phenomena Vol. 151 (2009) pp.190-196.

DOI: 10.4028/www.scientific.net/ssp.151.190

Google Scholar

[13] B. Kalska-Szostko, E. Brancewicz, P. Mazalski, J. Sveklo, W. Olszewski, K. Szymański, A. Sidor Acta Physica Polonica A Vol. 115 (2009) No 2. 542-544.

DOI: 10.12693/aphyspola.115.542

Google Scholar

[14] F. Li, L. Song, D. Zhou, T. Wang, Y. Wang, H. Wang; J. Mater. Sci. 42 (2007) 7214.

Google Scholar

[15] K. Kluchova, R Zboril, J. Tucek, M. Pecova, L. Zajoncova, I. Safarik, M. Mashlan, I. Markova, D. Jancik, M. Sebela, H. Bartonkova, V. Bellesi, P. Novak, D Petridis; Biomaterials, 30 (2009) 2855.

DOI: 10.1016/j.biomaterials.2009.02.023

Google Scholar

[16] Kalska et al will be published.

Google Scholar

[17] Kalska et al will be published.

Google Scholar