p.474
p.480
p.486
p.492
p.498
p.504
p.510
p.516
p.522
Investigation of Residual Stress Distribution of Wheel Rims Using Neutron Diffraction
Abstract:
Damage accumulation due to fatigue significantly reduces the safety of railway vehicles. Shattered wheel rim failures are the result of large fatigue cracks that propagate roughly parallel to the wheel tread surface. The large stress, most likely due to wheel/rail impact or material discontinuity, is responsible for the initiation of shattered rims. The voids and inclusions of sufficient size in a stress field will also lead to failure of wheels. Significant improvements have been made in recent years to prevent the shattered rim failure. The ‘new’ wheels have a better resistance to the shattered rim failure, due to the fact that the circumferential residual stress on tread of a new wheel must be compressive to comply with requirements of international standard EN 13262. However, this may not necessarily apply for millions of ‘old’ wheels that are still currently in use. At the moment the residual stress measurements are carried out using destructive methods (such as slitting or hole drilling), or using quantitatively ultrasound method obtaining the average stress across the whole section. The main objective of this research was to apply non-destructive neutron diffraction method to quantitatively measure residual stress distribution of the wheel rim in as manufactured condition.
Info:
Periodical:
Pages:
522-526
Citation:
Online since:
March 2011
Keywords:
Price:
Сopyright:
© 2011 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: