Investigation of Residual Stress Distribution of Wheel Rims Using Neutron Diffraction

Abstract:

Article Preview

Damage accumulation due to fatigue significantly reduces the safety of railway vehicles. Shattered wheel rim failures are the result of large fatigue cracks that propagate roughly parallel to the wheel tread surface. The large stress, most likely due to wheel/rail impact or material discontinuity, is responsible for the initiation of shattered rims. The voids and inclusions of sufficient size in a stress field will also lead to failure of wheels. Significant improvements have been made in recent years to prevent the shattered rim failure. The ‘new’ wheels have a better resistance to the shattered rim failure, due to the fact that the circumferential residual stress on tread of a new wheel must be compressive to comply with requirements of international standard EN 13262. However, this may not necessarily apply for millions of ‘old’ wheels that are still currently in use. At the moment the residual stress measurements are carried out using destructive methods (such as slitting or hole drilling), or using quantitatively ultrasound method obtaining the average stress across the whole section. The main objective of this research was to apply non-destructive neutron diffraction method to quantitatively measure residual stress distribution of the wheel rim in as manufactured condition.

Info:

Periodical:

Edited by:

Paolo Scardi and Cristy L. Azanza Ricardo

Pages:

522-526

DOI:

10.4028/www.scientific.net/MSF.681.522

Citation:

M. Alessandroni et al., "Investigation of Residual Stress Distribution of Wheel Rims Using Neutron Diffraction", Materials Science Forum, Vol. 681, pp. 522-526, 2011

Online since:

March 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.