Determining Ti-17 β-Phase Single-Crystal Elasticity Constants through X-Ray Diffraction and Inverse Scale Transition Model

Article Preview

Abstract:

The scope of this work is the determination of single-crystals elastic constants (SEC) from X-ray diffraction lattice strains measurements performed on multi-phase polycrystals submitted to mechanical load through a bending device. An explicit three scales inverse self-consistent model is developed in order to express the SEC of a cubic phase, embedded in a multi-phase polycrystal, as a function of its X-ray Elasticity Constants. Finally, it is applied to a two-phases (α+β) titanium based alloy (Ti-17), in order to estimate Ti-17 β-phase unknown SEC. The purpose of the present work is to account the proper microstructure of the material. In particular, the morphologic texture of Ti-17 a-phase, i.e. the relative disorientation of the needle-shaped grains constituting this phase, is considered owing to the so-called Generalized Self-Consistent model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-102

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.F. Nye: Physical Properties of Crystals, (Oxford, 1957).

Google Scholar

[2] V. Hauk and H. Kockelmann: Z. Metallkde. Vol. 70 (1979), pp.500-502.

Google Scholar

[3] E. Kröner: Z. Physik. Vol. 151 (1958), 504-518.

Google Scholar

[4] M. Hayakawa, S. Imai and M. Oka: J. Appl. Cryst., Vol. 18 (1985), pp.513-518.

Google Scholar

[5] S. Matthies, S. Merkel, H.R. Wenk, R.J. Hemley and H. Mao: Earth and Planetary Science Letters Vol. 194 (2001), pp.210-212.

DOI: 10.1016/s0012-821x(01)00547-7

Google Scholar

[6] S. Fréour, F. Jacquemin and R. Guillén: J. Mater. Sci. Vol. 42 (2007), pp.7537-7543.

Google Scholar

[7] V. Hauk: Structural and Residual Stress Analysis by Nondestructive Methods, (Elsevier Science, 1997).

Google Scholar

[8] S. Fréour, D. Gloaguen, M. François and R. Guillén: Phys. Status Solidi (b) Vol. 239 (2003), pp.297-309.

Google Scholar

[9] S. Fréour, D. Gloaguen, M. François, A. Perronnet and R. Guillén: Journal of Applied Crystallography Vol. 38 (2005), pp.30-37.

Google Scholar

[10] J.D. Eshelby: Proc. Roy. Soc. (London) A Vol. 241 (1957), pp.376-396.

Google Scholar

[11] S. Fréour, D. Gloaguen, M. François, R. Guillén, E. Girard and J. Bouillo: Mater. Sci. Forum. Vol. 404-407 (2002), pp.723-728.

DOI: 10.4028/www.scientific.net/msf.404-407.723

Google Scholar

[12] G. Youssef, S. Fréour, F. Jacquemin: Mech. Compos. Mater. Vol. 45(4) (2009), pp.369-380.

Google Scholar

[13] S. Fréour, D. Gloaguen, M. François and R. Guillén: Mater. Sci. Forum. Vol. 426-432 (2003), p.2083-(2088).

DOI: 10.4028/www.scientific.net/msf.426-432.2083

Google Scholar

[14] S. Fréour, D. Gloaguen, M. François, R. Guillén: (2004). Phys. Status Solidi a Vol. 201, p.59.

Google Scholar

[15] S. Fréour, D. Gloaguen, M. François, R. Guillén: (2006). Scripta Mater. Vol. 54, pp.1475-1478.

Google Scholar

[16] E. Lacoste, S. Fréour and F. Jacquemin: Mechanics of Materials Vol. 42 (2010), pp.218-226.

Google Scholar

[17] R. Hill: Journal of the Mechanics and Physics of Solids Vol. 15 (1967), pp.79-95.

Google Scholar

[18] U.F. Kocks, C.N. Tomé and H.R. Wenk: Texture and Anisotropy: preferred orientations in polycrystals and their effects on materials properties, (Cambridge University Press, 1998).

Google Scholar

[19] G. Youssef, S. Fréour and F. Jacquemin: J. Compos. Mater. Vol. 43 (2009), pp.1621-1637.

Google Scholar

[20] U. Welzel and S. Fréour: Philosophical Magazine Vol. 87 (2007), pp.3921-3943.

Google Scholar

[22] S. Fréour, F. Jacquemin and R. Guillén: J. Reinf. Plast. Comp. Vol. 25 (2006), pp.1039-1053.

Google Scholar

[23] Y. Benveniste, G.J. Dvorak and T. Chen: J. Mech. Phys. Solids Vol. 39 (1991), pp.927-946.

Google Scholar

[24] A.N. Norris: J. Appl. Mech. Vol. 56 (1989), pp.83-88.

Google Scholar

[25] Y.P. Qiu and G.J. Weng: International Journal of Engineering Science Vol 28 (1990), pp.1121-1137.

Google Scholar

[26] M. Ferrari: Mechanics of Materials Vol. 11 (1991), pp.251-256.

Google Scholar

[27] J.Y. Li: Mechanics of Materials Vol. 31 (1999), pp.149-159.

Google Scholar

[28] R. Morris: International Journal of Engineering Science Vol 8 (1970), p.49–61.

Google Scholar

[29] S. Fréour: Modèles de transition d'échelles pour l'étude de matériaux biphasés, (Editions Universitaires Européennes 2010), ISBN 978-613-1-50485-3.

Google Scholar

[30] C.N. Reid, J.L. Routbort and R.A. Maynard: J. Appl. Phys. Vol. 44 (1973), pp.1398-1399.

Google Scholar

[31] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato and T. Yashiro: Mat. Sci. Eng. A Vol. 243 (1998), pp.244-249.

Google Scholar

[32] M. Niinomi: Mat. Sci. Eng. A-Struct Vol. 243 (1998), pp.231-236.

Google Scholar