Analysis of Ductile Damage – Comparison between Micromechanical Models and Neutron Diffraction Experiments

Article Preview

Abstract:

Ductile damage is a consequence of large strains more or less localized. Taking into account damage in constitutive behaviour of metallic materials is necessary to model various engineering problems involved in forming processes (stamping, punching, shearing...). It would lead to accurate predictions introducing microstructural features of materials [1-2]. In the present study, two crystalline plasticity models including damage effects in the framework of scale transition methods are investigated. These models are developed and based on different approaches with direct application to duplex stainless steels. The first approach is a variant of the Berveiller-Zaoui model in which the effect of ductile damage has been introduced. The second one is a generalized Cailletaud model taking into account the ductile damage [3-6]. Because of the microstructural complexity of the chosen materials, some particular developments of the micromechanical approaches are considered. Moreover, continuous damage mechanics is used at grain scale including its effect (or coupling) on plastic or elastic-plastic flow with more or less complex hardenings. The modelling is justified on some previous experimental results in metallic duplex materials [7-8]. The developed models allow then deducing the macroscopic behaviour of the aggregate with damage effects from the grains behaviour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-96

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Gurson: Journal of Engineering Materials and Technology 44 (1977), pp.1-15.

Google Scholar

[2] V. Tvergaard and A. Needleman, in: Handbook of Materials Behaviour Models, Academic Press, NY (2001).

Google Scholar

[3] K. Saanouni: Int. Journal of Plasticity 12 (1996), pp.1111-1121.

Google Scholar

[4] A. Abdul-Latif and K. Saanouni: Int. Journal of Damage Mechanics 3 (1994), pp.237-259.

Google Scholar

[5] A. Abdul-Latif and K. Saanouni: Int. Journal of Plasticity 12 (1996), pp.1123-1149.

Google Scholar

[6] M. Boudifa, K. Saanouni and J. -L. Chaboche: Int. Journal of Mech. Sci. 51 (2009), pp.453-464.

Google Scholar

[7] J. -B. Leblond, in: Mécanique de la rupture fragile et ductile, Hermès, Paris (2003).

Google Scholar

[8] G. Rousselier, in: Handbook of Materials Behaviour Models, Academic Press, NY (2001).

Google Scholar

[9] J. -L. Chaboche, M. Boudifa and K. Saanouni: Int. Journal of Fracture 137 (2006), pp.51-75.

Google Scholar

[10] K. Danas, M. Idiart and P. Ponte-Castaéñeda: Comptes Rendus de Mécanique 336 (2008), pp.79-90.

DOI: 10.1016/j.crme.2007.10.017

Google Scholar

[11] M. Bornert, T. Bretheau and P. Gilormini, in: Homogénéisation en mécanique des matériaux, vol 2, Hermès, Paris (2001).

Google Scholar

[12] A. Zaoui, in: Passage du monocristal au polycristal, in: Colloque sur la mise en forme des matériaux métalliques (1988).

Google Scholar

[13] S. Bugat, in: Comportement et endommagement des aciers austéno-ferritiques vieillis : une approche micro-mécanique, PhD Thesis, ENSMP (2000).

Google Scholar

[14] G. Cailletaud: Int. Journal of Plasticity 8 (1992), p.55.

Google Scholar

[15] M. Berveiller and A. Zaoui: Journal Mech. Phys. Solids 26 (1979), p.325.

Google Scholar

[16] A. Baczmanski and C. Braham: Acta Mater. 52 (2004), pp.1133-1142.

Google Scholar

[17] R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski and E.C. Oliver: Acta Mater. 54 (2006), pp.5027-5039.

Google Scholar

[18] J. Santisteban, J. James, M. Daymond and L. Edwards: J. of Appl. Cryst. 39 (2006), pp.812-825.

Google Scholar

[19] P. Pecharsky, K. Vitalij and Y. Zavalij, in: Fundamentals of powder diffraction and structural characterization of materials, Springer (2008).

Google Scholar

[20] M. Boudifa, in: Modélisation macro et micro-macro des matériaux polycristallins endommageables avec compressibilité induite, PhD Thesis, UTT, Troyes (2006).

Google Scholar

[21] N. Hfaiedh, in: Modélisation micromécanique des polycristaux - couplage plasticité, texture et endommagement, PhD Thesis, UTT, Troyes (2009).

Google Scholar

[22] S. Gallée, in : Caractérisation expérimentale et simulation numérique des procédés d'emboutissage profond : application aux aciers inoxydables, PhD Thesis, UBS (2005).

Google Scholar

[23] P. Evrard, in: Modélisation polycrystalline du comportement élastoplastique d'un acier inoxydable austéno-ferritique, PhD Thesis, Ecole Centrale de Lille (2008).

Google Scholar

[24] M. Barral, J. -L. Lebrun, J. -M. Sprauel and G. Maeder: Met. Trans. A 18 (1987), pp.1229-1238.

Google Scholar