Microstructure and Mechanical Properties of CP-Ti Processed by 2 ECAP Passes Using a 90° Die at Room Temperature

Article Preview

Abstract:

Equal channel angular pressing (ECAP) deformation for commercial pure titanium (CP-Ti) was successfully conducted using a conventional die with an angle of 90° between the channels at room temperature via route B, in which the billet was rotated 90° along its longitudinal axis between adjacent passes. Each billet was processed for two passes using a ram speed of 26mms-1. The microstructures and mechanical properties of these CP-Ti billets with an initial grain size of ~23μm processed by ECAP were investigated. Experiment results show thin parallel shear bands with a width of 0.3~0.4μm are generated after one ECAP pass, which are composed of large number of dislocation cell blocks. After the two ECAP passes, some various directional bands are generated and the equiaxed and smaller-than-average CBs in local areas begin to appear. In addition, the ultimate strength and microhardness are significantly enhanced to ~725MPa and ~2283MPa, respectively. Meanwhile good elongation of 18.0% to failure is still remained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zhu, T. Lowe, T.G. Langdon: Scripta Mater. Vol. 51(2004), p.825.

Google Scholar

[2] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45(2000), p.103.

Google Scholar

[3] R.Z. Valiev, T.G. Langdon: Prog. Mater. Sci. Vol. 51(2006), p.881.

Google Scholar

[4] S L Semiatin, V M Segal, R E Goforth, N D Frey and D P DeLo: Metal. Mater. Trans. Vol. 30A(1999), p.1425.

Google Scholar

[5] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev and R.Z. Valiev: NanoStruct. Mater. Vol. 11(1999), p.947.

Google Scholar

[6] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe and R.Z. Valiev: Mater. Sci. Eng. Vol. 303A (2000), p.82.

Google Scholar

[7] W.J. Kim, C.Y. Hyun and H.K. Kim: Scripta Mater. Vol. 54(2006), p.1745.

Google Scholar

[8] A. Yu. Vinogradov, V.V. Stolyarov, S. Hashimoto and R.Z. Valiev: Mater. Sci. Eng. Vol. 318A (2001), p.163.

Google Scholar

[9] D.H. Shin, I. Kim, J. Kim, Y.S. Kim, S.L. Semiatin: Acta Mater. Vol. 51 (2003), p.983.

Google Scholar

[10] I. Kim, J. Kim, D.H. Shin, X.Z. Liao, Y.T. Zhu: Scripta Mater. Vol. 48 (2003), p.813.

Google Scholar

[11] V.V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev: Mater. Sci. Eng. Vol. 299A (2001), p.59.

Google Scholar

[12] D.P. DeLo, S. L. Semiatin: Metall. Maters. Trans. Vol. 30 (1999), p.1391.

Google Scholar

[13] S.L. Semiatin, D.P. DeLo: Materials and Design Vol. 21 (2001), p.311.

Google Scholar

[14] A. Yamashit, D. Yamaguch, Z. Horita: Mater. Sci. Eng. Vol. 287A (2000), p.100.

Google Scholar

[15] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon: Acta Mater. Vol. 55(2007), p.4769.

Google Scholar

[16] X.C. Zhao, W.J. Fu, X.R. Yang and T.G. Langdon: Scripta Mater. Vol. 59 (2008), p.542.

Google Scholar

[17] X.R. Yang, X.C. Zhao, W.J. Fu: Rare Metal Mat. Eng. Vol. 38 (2009), p.955.

Google Scholar

[18] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Mater. Vol. 35 (1996), p.143.

Google Scholar

[19] W.Q. Cao, S.H. Yu, Y.B. Chun, Y.C. Yoo, C.M. Lee, D.H. Shin, S.K. Hwang: Mater. Sci. Eng. Vol. 395A (2005), p.77.

Google Scholar