Microstructures and Mechanical Properties of Fcc Pure Metals with Different Stacking Fault Energies by Equal Channel Angular Pressing

Article Preview

Abstract:

In the present work 99.98% commercial pure copper, 99.5% commercial pure nickel and 99.5% commercial pure aluminum were imposed on high strain levels of ~24, ~8 and ~44 by equal channel angular pressing (ECAP) via route Bc, respectively. Microstructures and mechanical properties are investigated by TEM observations, tensile tests and microhardness tests. It shows that grain sizes of pure copper, pure nickel and pure aluminum has been severed refined from several tens of microns into several hundreds of nanometers after ECAP processing, however, microstructure of copper are mainly consisted of equiaxed (sub) grains with illegible grains/ (sub) grains boundaries after processed by ECAP, while it is featured as lamellar boundaries in that of pure nickel and as elongated grains in that of pure aluminum underwent a same strain level of ECAP. Results of mechanical properties show that yield strength and microhardness increase as strain increase up to a max value in copper, and then begin to decrease slightly, while mechanical properties of the other two increase as strain increases in nickel up to a strain level of ~12, and as in aluminum, yield strength and microhardness increase as strain increase in a relative low strain level, and then reach an saturation value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

193-203

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

Google Scholar

[2] R. Z. Valiev, T. G. Langdon: Prog. Mater. Sci. Vol. 51 (2006), p.881.

Google Scholar

[3] H. Jiang, Y. T. Zhu, D. P. Butt, T. C. Lowe and R. Z. Valiev: Mater. Sci. Eng. Vol. A290 (2000), p.128.

Google Scholar

[4] A .P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baró, J. A. Szpunar and T. G. Langdon: Acta Mater. Vol. 51 (2003), p.753.

DOI: 10.1016/s1359-6454(02)00466-4

Google Scholar

[5] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong. Scripta Mater. Vol. 39 (1998), p.1221.

Google Scholar

[6] M Eizadjou, H. D. Manesh and K. Janghorban: Journal of Alloys and Compounds Vol. 474 (2009), p.406.

Google Scholar

[7] J. Y. Huang, Y. T. Zhu, H. Jiang and T. C. Lowe: Acta Mater. Vol. 49 (2001), p.1497.

Google Scholar

[8] J.Y. Huang, Y.T. Zhu, H. Jiang and T.C. Lowe: Metal. Mater. Trans. Vol. 32A (2001), p.1559.

Google Scholar

[9] C. C. Koch: Nanostruct. Mater. Vol. 9 (1997), p.13.

Google Scholar

[10] A. P. Zhilyaev, B. K. Kim, J. A. Szpunar, M. D. Baró and T. G. Langdon: Mater. Sci. Eng. Vol. A391 (2005), p.377.

Google Scholar

[11] Y. H. Zhao, X. Z. Liao, Y. T. Zhu, Z. Horita and T. G. Langdon: Mater. Sci. Eng. Vol. A 410-411(2005), p.188.

Google Scholar

[12] S. D. Terhune, D. L. Swisher, K. O. Ishi, Z. Horita and T. G. Langdon: T. R. McNelley, Metal. Mater. Tran. Vol. 33A (2002), p.2173.

Google Scholar

[13] M. Reihanian, R. Ebrahimi, M. M. Moshiksar, D. Terada and N. Tsuji: Materials Characterization Vol. 59 (2008), p.1312.

Google Scholar

[14] F. H. D. Torre, E. V. Pereloma and C. H. J. Davies: Acta Mater. Vol. 4 (2006), p.1135.

Google Scholar

[15] F. D. Torre, R. Lapovok, J. Sandlin, P. F. Thomson, C. H. J. Davies and E. V. Pereloma: Acta Mater. Vol. 52 (2004), p.4819.

Google Scholar

[16] A. P. Zhilyaev, B. K. Kim, J. A. Szpunar, M. D. Baró and T. G. Langdon: Mater. Sci. Eng. Vol. A 391 (2005), p.377.

Google Scholar

[17] S. Qu, X. H. An, H.J. Yang, C. X. Huang, G. Yang, Q. S. Zang, Z. G. Wang, S. D. Wu, Z. F. Zhang: Acta Mater. Vol. 57 (2009), p.1586.

Google Scholar

[18] F.A. Mohamed: Acta Mater. Vol. 51 (2003), p.4107.

Google Scholar

[19] K. Lu, L. Lu, S. Suresh: Science 324 (2009), p.349.

Google Scholar

[20] X. Z. Liao, Y. H. Zhao, S. G. Srinivasan, Y. T. Zhu, R. Z. Valiev and D. V. Gunderov: Appl. Phys. Lett. Vol. 84 (2004), p.592.

Google Scholar

[21] D. A. Hughes, N. Hansen: ASM International, Materials Park, OH, 2004, p.192.

Google Scholar

[22] L. Chen, Q. Shi, D. Chen, S. Zhou, J. Wang and X. Luo: Mater. Sci. Eng. Vol. A 508 (2009), p.37.

Google Scholar

[23] M. Shaarbaf, M. R. Toroghinejad: Mater. Sci. Eng. Vol. A 473 (2008), p.28.

Google Scholar

[24] L. Kommel, I. Hussainova and O. Volobueva: Materials & Design Vol. 28 (2007), p.2121.

Google Scholar

[25] X. Molodova, G. Gottstein, M. Winning and R. J. Hellmig: Mater. Sci. Eng. Vol. A 460-461 (2007), p.204.

Google Scholar

[26] N. Lugo, N. Llorca, J.M. Cabrera and Z. Horita: Mater. Sci. Eng. Vol. A 477 (2008), p.366.

Google Scholar

[27] Y. Zhang, J. T. Wang, C. Cheng and J. Q. Liu: J. Mater. Sci. Vol. 43 (2008), p.7326.

Google Scholar

[28] R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi: Mater. Sci. Eng. Vol. A 396 (2005), p.341.

Google Scholar

[29] O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, Y. Watanabe: Acta Mater. Vol. 56 (2008), p.821.

DOI: 10.1016/j.actamat.2007.10.029

Google Scholar

[30] T. Sakai, H. Miura, A. Goloborodko, O. Sitdikov: Acta Mater. Vol. 57 (2009), p.153.

Google Scholar

[31] J.T. Wang, Y. Zhang. J.Q. Liu: Mater. Sci. Forum Vol. 584-586 (2008), p.929.

Google Scholar

[32] W.H. Huang, C.Y. Yu, P.W. Kao and C.P. Chang: Mater. Sci. Eng. Vol. A366 (2004), p.221.

Google Scholar

[33] A.M. Cuitino: Mater. Sci. Eng. Vol 216 (1996), p.104.

Google Scholar