Developing Metallic Glass Matrix Composites with In Situ Crystalline Spheres through the Mechanism of Liquid-Liquid Phase Decomposition in Miscibility Gap of the Multicomponent Immiscible Alloys

Article Preview

Abstract:

The solidification characteristics of the immiscible alloys exhibit a unique opportunity in designing composites with spherical crystalline particles dispersed in the amorphous metal matrix. The multicomponent Al82.87Pb2.5Ni4.88Y7.8Co1.95 immiscible alloy has been designed. The ribbon samples of the multicomponent alloy were prepared by the rapid quenching. The microstructure was characterized and the phase constitution and transformation were studied. The as-quenched samples revealed the Al-based metallic glass matrix is embedded by the spherical crystalline Pb-rich particles. A method has been developed, based on the mechanism of the liquid-liquid phase decomposition in the miscibility gap of the multicomponent immiscible alloy, to produce spherical crystalline particles in the amorphous matrix. The microstructure evolution in the Al-based amorphous matrix composites has been discussed

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-17

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Ratke and S. Diefenbach: Mater. Sci. Eng. R Vol. 15 (1995), p.263.

Google Scholar

[2] J. He, J. Z. Zhao and L. Ratke: Acta Mater. Vol. 54 (2006), p.1749.

Google Scholar

[3] J. He, J. Z. Zhao, H.L. Li, X.F. Zhang and Q.X. Zhang: Metall. Mater. Trans. A Vol. 39 (2008), p.1174.

Google Scholar

[4] A.C. Sandlin, J.B. Andrews and P.A. Curreri: Metall. Trans. A Vol. 19 (1988), p.2665.

Google Scholar

[5] H. Yasuda, I. Ohnaka, O. Kawakami, K. Ueno and K. Kishio: ISIJ Int. Vol. 43 (2003), p.942.

DOI: 10.2355/isijinternational.43.942

Google Scholar

[6] M. Kolbe, J. Brillo, I. Egry, D.M. Herlach, L. Ratke, D. Chatain, N. Tinet, C. Antion, L. Battezzati, S. Curiotto, E. Johnson and N. Pryds: Microgravity Sci. Technol. Vol. 18 (2006), p.174.

DOI: 10.1007/bf02870404

Google Scholar

[7] A.P. Tsai , N. Chandrasekhar and K. Chattopadhyay: Appl. Phys. Lett. Vol. 75 (1999), p.1527.

Google Scholar

[8] F. Prima, M. Tomut, I. Stone, B. Cantor, D. Janickonic, G. Vlasak and P. Svec: Mater. Sci. Eng. A Vol. 375 (2004), p.772.

Google Scholar

[9] A. Inoue, B.L. Shen, H. Koshibo, H. Kato and A.R. Yavari: Nature Mater. Vol. 2 (2003), p.661.

Google Scholar

[10] G. Wilde, N. Boucharat, R.J. Hebert, H. Rosner, W.S. Tong and J.H. Perepezko: Adv. Eng. Mater. Vol. 5 (2003), p.125.

Google Scholar

[11] H. Kato and A. Inoue: Mater. Trans. JIM Vol. 38 (1997), p.793.

Google Scholar

[12] R.D. Conner, R.B. Dandliker and W.L. Johnson: Acta Mater. Vol. 46 (1998), p.6089.

Google Scholar

[13] H. Choi-Yim, R.D. Conner, F. Szuecs and W.L. Johnson: Acta Mater. Vol. 50 (2002), p.2737.

Google Scholar

[14] D.G. Pan, H.F. Zhang, A.M. Wang and Z.Q. Hu: Appl. Phys. Lett. Vol. 89 (2006), p.261904.

Google Scholar

[15] C. C. Hays, C. P. Kim and W. L. Johnson: Phys. Rev. Lett. Vol. 84 (2000), p.2901.

Google Scholar

[16] U. Kuhn, J. Eckert, N. Mattern and L. Schultz: Appl. Phys. Lett. Vol. 80 (2002), p.2478.

Google Scholar

[17] G.Y. Wang, P.K. Liaw, A. Peter, M. Freels, W.H. Peter, R.A. Buchanan and C.R. Brooks: Intermetallics Vol: 14 (2006), p.1091.

DOI: 10.1016/j.intermet.2006.01.045

Google Scholar

[18] W. Zhang, S. Ishihara and A. Inoue: Mat. Trans. JIM Vol. 43 (2002), p.1767.

Google Scholar

[19] M.H. Lee and D.J. Sordelet: J. Mat. Res. Vol. 21 (2006), p.492.

Google Scholar

[20] G.Y. Sun, G. Chen, C.T. Liu and G.L. Chen: Scripta Mater. Vol. 55 (2006), p.375.

Google Scholar

[21] G.Y. Sun, G. Chen and G.L. Chen: Intermetallics Vol. 15 (2007), p.632.

Google Scholar

[22] J. He, H.Q. Li, J.Z. Zhao and C.L. Dai: Appl. Phys. Lett. Vol. 93 (2008), p.131907.

Google Scholar

[23] J. He, H.Q. Li, B.J. Yang, J.Z. Zhao, H.F. Zhang and Z.Q. Hu: J. Alloys Compd. Vol. 489 (2010), p.535.

Google Scholar

[24] J. He, H.Q. Li, C.Y. Xing and J.Z. Zhao: Acta Metall. Sin. Vol. 46 (2010), p.41.

Google Scholar

[25] J. He, J.Z. Zhao and X.F. Zhang, Chin. Patent, ZL200710010037. 2. (2007).

Google Scholar

[26] J. He, J.Z. Zhao and J. Liu, Chin. Patent, ZL200710010038. 7. (2007).

Google Scholar

[27] J. He, J.Z. Zhao and Y. Zhao, Chin. Patent, ZL200710010039. 1. (2007).

Google Scholar

[28] A. Inoue: Acta Mater. Vol. 48 (2000), p.279.

Google Scholar

[29] F.R. Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen: Cohesion and structure ( Elsevier Science, Amsterdam 1988).

Google Scholar

[30] A. Inoue, N. Matsumoto and T. Masumoto: Mat. Trans. JIM Vol. 31 (1990), p.493.

Google Scholar

[31] H. Okamoto: Desk Handbook Phase Diagrams For Binary Alloys (ASM International, New York 2000).

Google Scholar

[32] C. W. Yuen, K. L. Lee and H. W. Kui: J. Mater. Res. Vol. 12 (1997), p.314.

Google Scholar

[33] J.Z. Zhao, J. He, Z.Q. Hu and L. Ratke: Z. Metallkd. Vol. 95 (2004), p.362.

Google Scholar

[34] J.H. Perepezko, J.L. Sebright, P.G. Hockel and G. Wilde: Mater. Sci. Eng. A Vol. 326 (2002), p.144.

Google Scholar

[35] J.H. Perepezko and M.J. Uttormark: Metall. Mater. Trans. A Vol. 27 (1996), p.533.

Google Scholar