On the Cyclic Deformation Response and Microstructural Mechanisms of ECAPed and ARBed Copper - an Overview

Article Preview

Abstract:

With the increase of interest in using ultra-fine and nano-grained metals for structural purposes, the need to build on the knowledge pool regarding the response and behaviour of those metals under a mechanical load becomes more vital. However, it is well known that, especially for this type of materials such as the ECAPed and ARBed materials, the thermo-mechanical history affects the mechanical behaviour of the product strongly. Although ECAP and ARB are different techniques under the category of severe plastic deformation, similarities in their cyclic deformation response is observed from time to time. Specifically, the microstructural mechanisms involved in accommodating cyclic plastic strain in these two types of materials is seemingly comparable. The similarities arise from the similar microstructures in the majority of the volume of the bulk. In this report, the cyclic deformation response, and the related microstructural mechanisms of ECAPed copper will be discussed first and those of ARBed second. A comparison between ECAPed copper and ARBed copper will then be performed. Furthermore, the differences due to the unique features of ARBed material will be discussed. Lastly, the reasons behind the observed similarities in cyclic deformation behaviour and the related micro-mechanisms for metals process with the two different techniques will also be explored.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-68

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Wang, Z. Wang, K.T. Aust, U. Erb, Acta Metall. Mater., 43 (1995) p.519.

Google Scholar

[2] Y.T. Zhu and T.G. Langdon, Mater. Sci. Eng., A409 (2005) p.234.

Google Scholar

[3] M.V. Glazov and C. Laird, Acta Metall. Mater., 43 (1995) p.2849.

Google Scholar

[4] C.C.F. Kwan, Z. Wang, Procedia Eng., 2 (2010) p.101.

Google Scholar

[5] C.C.F. Kwan, Z. Wang, Mater. Sci. Eng. A, in press, Nov. (2010).

Google Scholar

[6] V.M. Segal, Mater. Sci. Eng., A197 (1995) p.157.

Google Scholar

[7] Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater., 46(1998) p.3317.

Google Scholar

[8] T.G. Langdon, J. Mater. Sci., 42 (2007) p.3388.

Google Scholar

[9] T.G. Langdon, Mater. Sci. Eng., A462 (2007) p.3.

Google Scholar

[10] A. Vinogradov and S. Hashimoto, Mater. Trans., 42 (2001) p.74.

Google Scholar

[11] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater., 47 (1999) p.579.

Google Scholar

[12] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Scr. Mater., 39 (1998) p.1221.

Google Scholar

[13] N. Tsuji, N., in: Severe Plastic Deformation, edited by B.S. Altan, New York: Nova Science Publishers, Inc., (2006) p.545.

Google Scholar

[14] C. Kwan, Z. Wang, S.B. Kang, Mater. Sci. Eng., A480 (2008) p.148.

Google Scholar

[15] C.C.F. Kwan, Z. Wang, J. Mater. Sci. 43 (2008) p.5025.

Google Scholar

[16] L.R. Vaidyanath, M.G. Nicholas, D.R. Milner, Brit. Weld. J., 6 (1959) p.13.

Google Scholar

[17] N. Bay, Metal. Const., 18 (1986) p.369.

Google Scholar

[18] H.J. Maier, P. Gabor, N. Gupta, I. Karaman, M., Haouaoui, Inter. J. of Fat., 28 (2006), p.243.

Google Scholar

[19] C.X. Huang, S.C. Wang, S.D. Wu, C.B. Jiang, G.Y. Li, S.X., Li, Mater. Sci. Forum, 475-479 (2005) p.4055.

Google Scholar

[20] Y. Furukawa, T. Fujii, S. Onaka, M. Kato, Mater. Trans. 50 (2009) p.70.

Google Scholar

[21] S.D. Wu, Z.G. Wang, C.B. Jiang, G.Y. Li, I.V. Alexandrov, R.Z. Valiev, Scr. Mater., 48 (2003) p.1605.

Google Scholar

[22] A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, V. Stolyarov, R. Valiev, Scr. Mater., 36 (1997) p.1345.

Google Scholar

[23] X.W. Li, S.D. Wu, Y. Wu, H.Y. Yasuda, Y. Umakoshi, Adv. Eng. Mater., 7 (2005) p.829.

Google Scholar

[24] X.W. Li, Y. Umakoshi, S.D. Wu, Z.G. Wang, I.V. Alexandrov, R.Z. Valiev, Phys. Stat. Sol. (a, ) 201 (2004) p. R1190.

Google Scholar

[25] X. -W. Li, Q. -W. Jiang, W. Ying, Y. Wang, Y. Umakoshi, Adv. Eng. Mater. 10 (2008) p.720.

Google Scholar

[26] S.Z. Han, M. Goto, C. Lim, C.J. Kim, S. Kima, J. Alloys and Compound, 434-435 (2007) p.304.

Google Scholar

[27] S.R. Agnew, J.R. Weertman, Mater. Sci. Eng., A244 (1998) p.145.

Google Scholar

[28] H.W. Höppel, M., Brunnbauer, H., Mughrabi, in: Materials Week 2000 - Proceedings, edited by Werkstoffwoche-Partnerschaft, Frankfurt, (2000) p.25.

Google Scholar

[29] H.W. Höppel, Z.M. Zhou, H. Mughrabi, R.Z. Valiev, Phil. Mag. A, 82(2002) p.1781.

Google Scholar

[30] S.R. Agnew, A. Yu. Vinogradov, S. Hashimoto, J.R. Weertman, J. of Elec. Mater., 28 (1999) p.1038.

Google Scholar

[31] M. Goto, S. Z Han, T. Yakushiji, C.Y. Lim, S.S. Kim, Scr. Mater., 54 (2006) p.2101.

Google Scholar

[32] H.W. Höppel, C. Xu, M. Kautz, N. Barta-Schreiber, T.G. Langdon, H. Mughrabi, In: Second International Conference on Nanomatierlas by Severe Plastic Deformation, edited by: M.J. Zehetbauer, R.Z. Valiev, New York, USA: Weinheim/Wiley VCG (2004).

DOI: 10.1002/3527602461.ch12b

Google Scholar

[33] H. Mugrhrabi, H.W. Höppel, Mat. Res. Soc. Symp. Proc., 634 (2001) p. B2. 1. 1.

Google Scholar

[34] A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, R. Valiev, Mater. Sci. Forum, 269-272 (1998) p.987.

Google Scholar

[35] L. Kunz, P. Lukáš, M. Svoboda, Mater. Sci. Eng,. A424 (2006) p.97.

Google Scholar

[36] P. Lukáš, L. Kunz, M. Svoboda, Metall. Mater. Trans. A, 38A (2007) p. (1910).

Google Scholar

[37] L. Kunz, P. Lukáš, L. Pantelejev, O. Man, Strain, in press, DOI: 10. 1111/j. 1475-1305. 2009. 00710. x (2010).

Google Scholar

[38] C.Z. Xu, Q.J. Wang, M.S. Zheng, J. D. Li, M.Q. Huang, Q.M. Jia, J.W. Zhu, L. Kunz, M. Buksa, Mater. Sci. Eng., A 475 (2008) p.249.

Google Scholar

[39] H. Mughrabi, H.W. Höppel, Inter. J. Fat., 32 (2010) p.1413.

Google Scholar

[40] H. Mughrabi, H.W. Höppel, M. Kautz, In: Ultrafine Grained Materials IV, editor: Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, T.C. Lowe, TMS, (2006) p.47.

Google Scholar

[41] P. Lukáš, L. Kunz, M. Svoboda, Mater. Sci. Forum, 567-568 (2008) p.9.

Google Scholar

[42] H.W. Höppel, Mater. Sci. Forum, 503-504 (2006) p.259.

Google Scholar

[43] H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev, H. Mughrabi, Inter. J. Fat., 28 (2006) p.1001.

Google Scholar