Inhibition of Taq DNA Polymerase and DNA Exonuclease ExoIII by an Aqueous Nanoparticle Suspension of a Bis-Methanophosphonate Fullerene

Article Preview

Abstract:

An aqueous nanoparticle suspension of a bis-methanophosphonate fullerene (n-BMPF) was tested to clarify its effects on polymerase chain reaction (PCR) with the catalyst of Taq DNA polymerase and DNA exonuclease Exo Ⅲ and the template of super-coiled plasmid pEGFP-N1. It was found that the product amounts from PCR decreased significantly with addition of the n-BMPF. The inhibition by the n-BMPF was dose-dependent and IC50 values for reactions of PCR were 2.7 μmol/L. Increase of Taq DNA polymerase amounts in PCR system antagonized the activities of the n-BMPF. However, addition of two scavengers of reactive oxygen species (ROS), mannitol and azide at the concentrations of 2~10 mmol/L did not antagonize the activities of the n-BMPF against PCR. These data implied that this inhibition probably did not correlate to ROS. Meanwhile, the inhibition for the DNA exonuclease Exo Ⅲ by the n-BMPF was evident and dose-dependent.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

345-351

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kroto. H. W, Heath. J. R, O'Brien. S. C, Curl. R. F and Smally. R. E: Nature. Vol. 318 (1985), p.162.

Google Scholar

[2] Mashino. T, Shimotohno. K, Ikegami. N, Nishikawa. D, Okuda. K, Takahashi. K, Nakamura. S and Mochizuki. M: Bioorg. Med. Chem. Lett. Vol. 15 (2005), p.1107.

Google Scholar

[3] Yang. X. L, Fan. C. H and Zhu. H. S: Tox. Vitro. Vol. 16 (2002), p.41.

Google Scholar

[4] Bosi. S, Da. Ros. T, Spalluto. G and Prato. M: Eur. J. Med. Chem. Vol. 38 (2003), p.913.

Google Scholar

[5] Friedman. S. H, Decamp. D. L, Sijbesma. R. P, Srdanov. G, Wudl. F and Kenyon. G. L: J. Am. Chem. Soc. Vol. 115 (1993), p.6506.

DOI: 10.1021/ja00068a005

Google Scholar

[6] Tokuyama. H, Yamago. S, Nakamura. E, Shiraki. T and Sugiura. Y: J. Am. Chem. Soc. Vol. 115 (1993), p.7918.

DOI: 10.1021/ja00070a064

Google Scholar

[7] Yang. X. L, Huang. C, Qiao. X. G, Yao. L, Zhao. D. X and Tan. X: Tox. Vitro. Vol. 21 (2007), p.1493.

Google Scholar

[8] Cheng. F. Y, Yang. X. L, Fan. C. H and Zhu. H. S: Tetrahedron. Vol. 57 (2001), p.7331.

Google Scholar

[9] Dhawan. A, Taurozzi. J. S, Pandey. A. K, Shan. W. Q, Miller. S. M, Hashsham. S. A and Tarabara. V. V: Environ. Sci. Technol. Vol. 40 (2006), p.7394.

DOI: 10.1021/es0609708

Google Scholar

[10] Deguchi. S, Rossitza. G. A, Tsujii. K: Langmuir. Vol. 17 (2001), p.6013.

Google Scholar

[11] Gharbi. N, Pressac. M, Hadchouel. M, Szwarc. H, Wilson. S. R, Moussa. F: Nano. Lett. Vol. 5 (2005), p.2578.

DOI: 10.1021/nl051866b

Google Scholar

[12] Lyon. D. Y, Adams. L. K, Falkner. J. C, Alvarez. P. J: J. Environ. Sci. Technol. Vol. 40 (2006), p.4360.

Google Scholar

[13] Stoilova. O, Je´roˆme. C, Detrembleur. C, Mouithys-Mickalad. A, Manolova. N, Rashkov. I, Je´roˆme. R: Chem. Mater. Vol. 18 (2006), p.4917.

DOI: 10.1021/cm060796m

Google Scholar

[14] Higashi. N, Shosu. T, Koga. T, Niwa. M, Tanigawa. T: J. Colloid. Interf. Sci. Vol. 298 (2006), p.118.

Google Scholar

[15] Daroczi. B, Kari. G, McAleer. M. F, Wolf. J. C, Rodeck. U, Dicker. A. P: Clin. Cancer. Res. Vol. 12 (2006), p.7086.

Google Scholar

[16] Zhou. G, Harruna. I. I, Zhou. W. L, Aicher. W. K, Geckeler. K. E: Chem. Eur. J. Vol. 13 (2007), p.569.

Google Scholar

[17] Isobe. H, Nakanishi. W, Tomita. N, Jinno. S, Okayama. H, Nakamura. E: Mol. Pharmaceutics. Vol. 3 (2006), p.124.

Google Scholar