Effect of Hf Doping on the Dielectric Properties of Barium Zirconate Titanate Ceramics

Article Preview

Abstract:

Pure and Hf-doped BaZr0.2Ti0.8O3 (short for BZT) ceramics are prepared by a conventional solid state reaction method. The crystal structure and dielectric properties of Hf-doped BZT ceramics have been investigated. The results indicate that Hf4+ ions have entered the unit cell maintaining the perovskite structure of solid solution and the pure and Hf-doped BZT ceramics are cubic phase. Addition of hafnium leads to the fall of the phase transition temperature and can decrease the dielectric loss of BZT ceramics at room temperature. When Hf content is more than 0.5 wt.%, the diffuseness of the phase transition enhances with the increasing of Hf content and when Hf content is 3 wt.%, the diffuseness of Hf-doped BZT ceramics is more than that of the pure BZT ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-268

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. S. Jung, J. H. Kim, H. T. Kim and D. H. Yoon: Mater. Lett Vol. 64 (2010), p.170.

Google Scholar

[2] Y.H. Chen, W. H. Tuan and J. Shieh: J. Eur. Ceram. Soc Vol. 30 (2010), p.2577.

Google Scholar

[3] W. Cai, C. L. Fu, J. C. Gao and H. Q. Chen: J. Alloy. Compd Vol. 480 (2009), p.870.

Google Scholar

[4] L. N. Gao, J. W. Zhai, Y. W. Zhang and X. Yao: J. Appl. Phys Vol. 107(2010), p.064105.

Google Scholar

[5] T. M. Doan, L. Lu and M. O. Lai: J. Phys. D. Appl. Phys Vol. 43 (2010), p.035402.

Google Scholar

[6] N. Binhayeeniyi, P. Sukvisut, C. Thanachayanont and S. Muensit: Mater. Lett Vol. 64 (2010), p.305.

Google Scholar

[7] F. Moura, A. Z. Simões, B. D. Stojanovic, M. A. Zaqhete, E. Longo and J. A. Varela: J. Alloy. Compd Vol. 462 (2008), p.129.

Google Scholar

[8] K. H. Chen, T. C. Chang, G. C. Chang, Y. E. Hsu, Y. C. Chen and H. G. Xu: Appl. Phys. A-Mater Vol. 99 (2010), p.291.

Google Scholar

[9] W. Cai, C. L. Fu, J. C. Gao and X. L. Deng: J. Mater. Sci-Mater. El Vol. 21 (2010), p.317.

Google Scholar

[10] W. Cai, J. C. Gao, C. L. Fu and L. W. Tang: J. Alloy. Compd Vol. 487 (2009), p.668.

Google Scholar

[11] W. Cai, C. L. Fu, J. C. Gao and X. L. Deng: J. Mater. Sci-Mater. El Vol. 21 (2010), p.796.

Google Scholar

[12] T. Badapanda, S. K. Rout, L. S. Cavalcante, J. C. Sczancoski, S. Panigrahi, T. P. Sinha and E. Longo: Mater. Chem. Phys Vol. 121 (2010), p.147.

DOI: 10.1016/j.matchemphys.2010.01.008

Google Scholar

[13] S. Mahajan, O. P. Thakur, D. K. Bhattacharya and K. Sreenivas: J. Phys. D. Appl. Phys Vol. 42 (2009), p.065413.

Google Scholar

[14] S. Halder, P. Gerber, T. Schneller and R. Waser: Appl. Phys. A Vol. 83 (2006), p.285.

Google Scholar

[15] J. F. Ihledeld, W. J. Borland and J. P. Maria: Thin. Solid. Films Vol. 516 (2008), p.3162.

Google Scholar

[16] S. Anwar, P. R. Sagdeo and N. P. Lalla: Solid. State. Commun Vol. 138 (2006), p.331.

Google Scholar

[17] X. G. Tang, J. Wang, X. X. Wang and H. L. W. Chan: Solid. State. Commun Vol. 131 (2004), p.163.

Google Scholar

[18] K. Uchino and S. Nomura: Ferroelectr Vol. 44 (1982), p.55.

Google Scholar