Deposition and Characterization of Pyroelectric PMN-PT Thin Films for Uncooled Infrared Focal Plane Arrays

Article Preview

Abstract:

Modern uncooled infrared focal plane arrays (UFPA) development is oriented toward silicon microstructure monolithic arrays by employing pyroelectric thin films with continuing trends in high performance and miniaturization. In order to exploit high performance pyroelectric thin films, (1−x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN-PT) thin films with x = 0.26 were deposited on LaNiO3/Si substrates by the radio-frequency magnetron sputtering technique. (110) preferred orientation thin films with pure perovskite structures were obtained at a substrate temperature of 500°C. The ferroelectric, dielectric and pyroelectric properties of the films were investigated. The films show a typical polarization – electric filed hysteresis loop with a large remnant polarization of 17.2 μC/cm2. At room temperature, the high pyroelectric coefficient of 3.1 × 10-4 C/m2K together with low dielectric constant of 470 and loss tangent of 0.04 render the film promising for uncooled infrared device applications. The origin of the differences in electrical properties between the films and bulk materials has also been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

242-246

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. W. Whatmore: Rep. Prog. Phys. 49 (1986) 1335.

Google Scholar

[2] P. W. Kruse: Uncooled Thermal Imaging, Arrays, Systems, and Applications (SPIE Press, USA 2001).

Google Scholar

[3] Y. X. Tang and H. S. Luo: J. Phys. D: Appl. Phys. 42 (2009) 075406.

Google Scholar

[4] Y. X. Tang and H. S. Luo: Infrared Phys. & Tech. 52 (2009) 180.

Google Scholar

[5] P. Felix, P. Gamot, P. Lacheau and Y. Raverdy: Ferroelectrics 17 (1978) 543.

Google Scholar

[6] S. E. Stokowski: Appl. Phys. Lett. 29 (1976) 393.

Google Scholar

[7] E. H. Putley: Infrared Phys. 20 (1980) 149.

Google Scholar

[8] C. P. Shaw, S. Gupta, S. B. Stringfellow, A. Navarro, J. R. Alcock and R. W. Whatmore: J. European Ceram. Soc. 22 (2002) 2123.

Google Scholar

[9] Z. Kighelman, D. damjanovic and N. Setter: J. Appl. Phys. 90 (2001) 4682.

Google Scholar

[10] H. Fan and H. Kim: Jpn. J. Appl. Phys. 41 (2002) 6768.

Google Scholar

[11] S. Yokoyama, S. Okamoto, H. Funakubo, T. Lijima, K. Saito, H. Okino, T. Yamamoto, K. Nishida, T. Katoda and J. Sakai: J. Appl. Phys. 100 (2006) 054110.

Google Scholar

[12] M. C. Jiang, T. J. Hong and T. B. Wu: Jpn. J. Appl. Phys. 33 (1994) 6301.

Google Scholar

[13] C. Tantigate, J. Lee and A. Safan: Appl. Phys. Lett. 66 (1995) 1611.

Google Scholar

[14] F. Wu, X. M. Li, W. D. Yu and X. D. Gao: J. Crys. Grow. 310 (2008) 575.

Google Scholar

[15] N. J. Donnelly, G. Catalan, C. Morros, R. M. Bowman and J. M. Gregg: J. Appl. Phys. 93 (2003) 9924.

Google Scholar

[16] J. Wang, K. H. Wong, H. L. W. Chan and C. L. Choy: Appl. Phys. A 79 (2004) 551.

Google Scholar

[17] J. P. Maria, W. Hackenberger and S. Trolier-McKinstry: J. Appl. Phys. 84 (1998) 5147.

Google Scholar

[18] Y. X. Tang, H. S. Luo and X. Y. Zhao: Chinese Sci Bull (Chinese Ver) 54 (2009)2483.

Google Scholar

[19] N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Strolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada and S. Streiffer: J. Appl. Phys. 100 (2006) 051606.

DOI: 10.1063/1.2393042

Google Scholar

[20] M. E. Lines and A. M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York 1977).

Google Scholar

[21] Y. X. Tang, X. Y. Zhao, X. Q. Feng, W. Q. Jin and H. S. Luo: Appl. Phys. Lett. 86 (2005) 082901.

Google Scholar