(1-x)(K0.475Na0.475Li0.05)(Nb0.975Sb0.025)O3-xBiFeO3 Lead-Free Piezoelectric Ceramics with CuO Sintering Aid

Article Preview

Abstract:

(1-x) (K0.475Na0.475Li0.05)(Nb0.975Sb0.025)O3-xmolBiFeO3 (x=0, 0.002, 0.004, 0.006, 0.008) doped with 0.8mol%CuO lead-free piezoelectric ceramics were prepared by the solid state reaction technique. X-ray diffraction patterns suggested that all the ceramics presented perovskite structure. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. The ceramic (x=0.002) near room temperature exhibited excellent electrical properties (piezoelectric constant d33=172pC/N, planar electromechanical coupling factor kp=0.43, and dielectric constant =418). A relatively high mechanical quality factor (Qm=200) was also obtained in this particular composition. All these results revealed that this system might become a promising candidate for lead-free piezoelectric materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

228-232

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.L. Du, W.C. Zhou, F. Luo, D.M. Zhu, S.B. Qu, Y. Li and Z.B. Pei: J. Appl. Phys Vol. 104 (2008), pp.034104-7.

Google Scholar

[2] R.Z. Zuo, C. Ye and X.S. Fang: J. Phys. Chem. Solids Vol. 69(2008), pp.230-235.

Google Scholar

[3] M. Mahesh Kumar, V.R. Palkara, K. Srinivas, S.V. Suryanarayana: Appl. Phys. Lett Vol. 76 (2000), p.2764.

Google Scholar

[4] J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh: Science Vol. 299(2003), p.1719.

DOI: 10.1126/science.1080615

Google Scholar

[5] T.P. Comyn, S.P. McBride, A.J. Bell: Mater. Lett Vol. 58 (2004), p.3844.

Google Scholar

[6] J.R. Cheng, Z.Y. Meng, L.E. Cross: J. Appl. Phys. Vol. 98 (2005), p.084102.

Google Scholar

[7] H. Nagata, N. Koizumi, T. Takenaka: Key Eng. Mater. Vol. 169-170(1999), pp.37-40.

Google Scholar

[8] R.Z. Zuo, C. Ye, X.S. Fang: J. Phys. Chem. Solids Vol. 69 (2008), p.230.

Google Scholar

[9] M.H. Jiang, X.Y. Liu, G.H. Chen: Scripta Mater Vol. 60 (2009), p.909.

Google Scholar

[10] D. Lin, K. W. Kwok, and H. L. W. Chan: Appl. Phys. A Vol. 88(2007), p.359.

Google Scholar

[11] H. Y. Park, I. T. Seo, M. K. Choi, S. Nahm, H. G. Lee, H. W. Kang, and B. H. Choi: J. Appl. Phys. Vol. 104 (2008), p.034103.

Google Scholar

[12] H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, S. Nahm, and K. Uchino, Appl. Phys. Lett. Vol. 89 (2006), p.062906.

Google Scholar

[13] R.Z. Zuo, C. Ye, X.S. Fang: J. Phys. Chem. Solids Vol. 69 (2008), p.230.

Google Scholar

[14] D. Lin, K. W. Kwok, and H. L. W. Chan: J. Appl. Phys. Vol. 102 (2007), p.074113.

Google Scholar