The Improvement of Performance of HfO2/Gd2O3/Si Stack Compared with Gd-Doped HfO2 High-K Films

Article Preview

Abstract:

HfO2/Gd2O3/Si stack and Gd-doped HfO2 (GDH) High-k films have been grown on p-type Si (001) substrates by RF sputtering. The amorphous structures of GDH high k film which be grown and annealed at 700°C have been determined by HRTEM. There is a interface layer between Gd2O3 film and Si in HfO2/Gd2O3/Si stack. XPS measurement reveals that the peak shift to small binding energy for Hf4f due to the formation of Hf-O-Gd, and there are formations of gadolinium and hafnium silicate. A leakage current density of 1×10-6 A/cm2 at -1 V, a hysteresis voltage of 13 mV, a dielectric constant of 23 and a CET of 1 nm are obtained from a capacitor with Pt/HfO2/Gd2O3/Si/Ag stack through C-V and I-V measurements. In addition, the HfO2/Gd2O3/Si stack film has a higher breakdown voltage (~ 30 V) than that of GDH films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-214

Citation:

Online since:

June 2011

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Costin Anghel, Prathyusha Chilagani, Amara Amara, and Andrei Vladimirescu. Appl. Phys. Lett. 96 (2010) 122104.

DOI: 10.1063/1.3367880

Google Scholar

[2] Takashi Ando, Matt Copel, John Bruley, Martin M. Frank, Heiji Watanabe, and Vijay Narayanan. Appl. Phys. Lett. 96 (2010) 132904.

DOI: 10.1063/1.3373914

Google Scholar

[3] X. Li, K. L. Pey, M. Bosman, W. H. Liu, and T. Kauerauf. Appl. Phys. Lett. 96 (2010) 022903.

Google Scholar

[4] S. Toyoda, H. Kamada, T. Tanimura, H. Kumigashira, M. Oshima, T. Ohtsuka, Y. Hata, and M. Niwa. Appl. Phys. Lett. 96 (2010) 042905.

DOI: 10.1063/1.3298355

Google Scholar

[5] Rahul Suri, Daniel J. Lichtenwalner, and Veena Misra. 96 (2010) 112905.

Google Scholar

[6] He. G, Fang Q, Liu M, Zhu L Q, Zhang L D, J. Cryst. Growth. 268 (2004) 155.

Google Scholar

[7] L. Wang, K. Xue, J. B. Xu, A. P. Huang Paul K. Chu. Appl. Phys. Lett. 88 (2006) 072903.

Google Scholar

[8] J. Niinistö, K. Kukli, M. Heikkila, M. Ritala, and M. Leskela, Adv. Eng. Mater. 11 (2009) 223.

Google Scholar

[9] P.R. Chalker, M. Werner, S. Romani, R.J. Potter, K. Black, H.C. Aspinall, A.C. Jones, C.Z. Zhao, S. Taylor, and P.N. Heys, Appl. Phys. Lett. 93 (2008) 182911.

DOI: 10.1063/1.3023059

Google Scholar

[10] X.Q. Zhang, H.L. Tu, F. Wei, L. Wang, J. Du, J. Cryst. Growth. 312 (2009) 41–43.

Google Scholar

[11] Y.B. Losovyj, I. Ketsman, A. Sokolov, K.D. Belashchnko, P. A . Dowben, J. Tang, and Z. Wang. Appl. Phys. Lett. 91 (2007) 132908.

DOI: 10.1063/1.2787967

Google Scholar

[12] M. Venkatesan, C.B. Fitzgerald, and J.D.M. Coey, Nature 430 (2004) 630.

Google Scholar

[13] M.J. Guittet, J.P. Crocombette, M. Gautier-Soyer, Phys. Rev. B 63 (2001) 125117.

Google Scholar

[14] G He, M Liu, LQ Zhu, M Chang, Q Fang, LD Zhang. Surf. Sci. 576 (2005) 67-75.

Google Scholar

[15] J.P. Xu, F. Ji, C.X. Li, P.T. Lai, J.G. Guan, Y.R. Liu, Appl. Phy. Lett. 91 (2007) 152905.

Google Scholar

[16] Xiaolei Wang, Kai Han, Wenwu Wang, Xueli Ma, Dapeng Chen, Jing Zhang, Jun Du, Yuhua Xiong, and Anping Huang. Appl. Phy. Lett. 97 (2010) 062901.

Google Scholar