Preparation and Relaxor Behavior of Barium Strontium Titanate Glass-Ceramics Doped Si-B-O Sintered from Sol-Gel Derived Powders

Article Preview

Abstract:

The structural and dielectric properties of Si-B-O doped Ba0.60Sr0.40TiO3 (BST) glass-ceramics prepared by using sol-gel derived powders have been investigated. The secondary phase of BaTi2Si2O8 is clearly observable in BST glass-ceramics when the concentration of Si-B-O is equal to or more than 20mol%. The samples with high Si-B-O doping levels can be sintered into dense microstructure in low sintering temperature (below 1000°C). The dielectric peaks of BST glass-ceramics are markedly suppressed, broadened and shifted to low temperature with increasing the concentration of Si-B-O, accompanying an increased diffuseness of the dielectric peak due to the ionic substitution, which follows well the Lorenz-type relation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

370-374

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. De. Flaviis, N.G. Alexopoulos and O.M. Stafosudd: IEEE Trans. Microwave Theory Tech. Vol. 45 (1997), p.963.

Google Scholar

[2] A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh and N. Setter: J. Electroceram. Vol. 11 (2003), p.5.

Google Scholar

[3] S.M. Rhim, S. Hong, H. Bak and O.K. Kim: J. Am. Ceram. Soc. Vol. 83 (2000), p.1145.

Google Scholar

[4] H.W. You and J.H. Koh: Jpn. J. Appl. Phys. Vol. 45 (2006), p.6362.

Google Scholar

[5] T. Hu, T.J. Price, D.M. Iddles, A. Uusimäki and H. Jantunen: J. Eur. Ceram. Soc. Vol. 25 (2005), p.2531.

Google Scholar

[6] B. Zhang, X. Yao and L. Zhang: Ceram. Int. Vol. 30 (2004), p.1767.

Google Scholar

[7] H.T. Jiang, J.W. Zhai, J.J. Zhang and X. Yao: J. Am. Ceram. Soc. Vol. 92 (2009), p.2319.

Google Scholar

[8] J.M. Wu and H.L. Huang: J. Non-cryst. Solids Vol. 260 (1999), p.116.

Google Scholar

[9] J.Y. Wang, X. Yao and L.Y. Zhang: Ceram. Int. Vol. 30 (2004), p.1749.

Google Scholar

[10] J.W. Zhai, X. Yao, X.G. Chen, L.Y. Zhang and H. Chen: J. Mater. Sci. Vol. 37 (2002), p.3739.

Google Scholar

[11] Y. Imry and S.K. Ma: Phys. Rev. Lett. Vol. 35 (1975), p.1399.

Google Scholar

[12] J. Macutkevic, S. Kamba, J. Banys, A. Brilingas, A. Pashkin, J. Petzelt, K. Bormanis and A. Sternberg: Phys. Rev. B Vol. 74 (2006), p.104106.

DOI: 10.1103/physrevb.74.104106

Google Scholar

[13] G.A. Smolenskii and A.I. Agranovskaya: Sov. Phys. Solid State Vol. 1 (1960), p.1429.

Google Scholar

[14] S.F. Wang, Y.C. Hsu, J.P. Chu and C.H. Wu: Appl. Phys. Lett. Vol. 88 (2006), p.042909.

Google Scholar

[15] R.D. Shannon: Acta Crystal. A Vol. 32 (1976), p.751.

Google Scholar

[16] H.C. Yu and Z.G. Ye: J. Appl. Phys. Vol. 103 (2008), p.034114.

Google Scholar

[17] J.P. Zhang, B.I. Lee, R.W. Schwartz and Z.Y. Ding: J. Appl. Phys. Vol. 85 (1999), p.8343.

Google Scholar

[18] A.A. Bokov, Y.H. Bing, W. Chen, Z.G. Ye, S.A. Bogatina, I.P. Raevski, S.I. Raevskaya and E.V. Sahkar: Phys. Rev. B Vol. 68 (2003), p.052102.

DOI: 10.1103/physrevb.68.052102

Google Scholar