Structural and Electrical Properties of BiFeO3 Fabricated on C-Sapphire Substrates Using a Double SrTiO3/TiO2 Buffer Layer

Article Preview

Abstract:

BiFeO3 (BFO) thin films were deposited by pulsed laser deposition (PLD) on c-plane sapphire substrates with a double SrTiO3/TiO2 oxide buffer layer grown by laser molecular beam epitaxy (laser-MBE). X-ray diffraction data showed the highly (111)-oriented perovskite phase in the BFO films with SrTiO3/TiO2 buffer layers, compared to the polycrystalline thin film grown directly on sapphire substrates. The epitaxial BiFeO3 thin films inherit its orientation from the underlying SrTiO3 buffer layer and have two in-plane orientations: (111)[1-10] BiFeO3 // (0001)[1-100] Al2O3 plus a twin variant related by a 180° in-plane rotation. The BiFeO3 thin films with the buffer layer show an out-of-plane remanent polarization of 81.5μC/cm2, which is comparable to the remanent polarization of BiFeO3 prepared on other single crystal substrates. Electrical measurements demonstrate that the BiFeO3 thin films with the buffer layer exhibit excellent fatigue endurance and a low leakage current density relative to the films without the buffer layer. These results indicate that the (111)-oriented BiFeO3 films with favorable electrical performance could be epitaxially grown on sapphire substrates using the double SrTiO3/TiO2 buffer layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

385-390

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).

DOI: 10.1126/science.1080615

Google Scholar

[2] J. F. Li, J. L. Wang, M. Wuttig, R. Ramesh, N. G. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, Appl. Phys. Lett. 84, 5261 (2004).

DOI: 10.1063/1.1764944

Google Scholar

[3] Fujitsu Microelectronics America, Inc., Sunnyvale, CA, Press Release, 2 August 2006 (http: /www. fujitsu. com/ca/en/news/pr/fma_20060802. html).

Google Scholar

[4] S. K. Singh, H. Ishiwara, and K. Maruyama, Appl. Phys. Lett. 88, 262908 (2006).

Google Scholar

[5] S. E. Lofland, K. F. McDonald, C. J. Metting, E. Knoesel, M. Murakami, M. A. Aronova, S. Fujino, M. Wuttig, and I. Takeuchi, Phys. Rev. B 73, 092408 (2006).

DOI: 10.1103/physrevb.73.092408

Google Scholar

[6] J. -Y. Hwang, J. -P. Kim, S. -Y. Jeong, S. -G. Yoon, and W. -J. Lee, Jpn. J. Appl. Phys., Part 2 43, L1425 (2004).

Google Scholar

[7] Kwi Young Yun, Dan Ricinschi, Takeshi Kanashima, and Masanori Okuyama, Appl. Phys. Lett. 89, 192902 (2006).

DOI: 10.1063/1.2385859

Google Scholar

[8] W. Tian, V. Vaithyanathan, D. G. Schlomb, Q. Zhan, S. Y. Yang, Y. H. Chu, and R. Ramesh, Appl. Phys. Lett. 90, 172908 (2007).

Google Scholar

[9] S. K. Singh, H. Ishiwara, and K. Maruyama, J. Appl. Phys. 100, 064102 (2006).

Google Scholar

[10] F. Kubel and H. Schmid, Acta Crystallogr., Sect. B: Struct. Sci. B46, 698 (1990).

Google Scholar

[11] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. -M. Liu, and Z. G. Liu, Appl. Phys. Lett. 84, 1731 (2004).

Google Scholar

[12] W. Tian, V. Vaithyanathan, D. G. Schlom, Q. Zhan, S. Y. Yang, Y. H. Chu, and R. Ramesh, Appl. Phys. Lett. 90, 172908 (2007).

DOI: 10.1063/1.2730580

Google Scholar

[13] S. K. Singh, Y. K. Kim, H. Funakubo, and H. Ishiwara, Appl. Phys. Lett. 88, 102904 (2006).

Google Scholar

[14] Jiagang Wu and John Wang, J. Appl. Phys. 106, 104111 (2009).

Google Scholar