Study of Energy Harvesting Using Piezoelectric Cymbal Transducers

Article Preview

Abstract:

The performance of harvesting energy using piezoelectric cymbal transducers has been studied from gentle mechanical vibration under different pre-stress conditions. The cymbal transducer was fixed at 12.9 mm diameter and evaluated the output power of harvesting energy under an AC force of 0.7 N. The maximum power output reached 3.7mW with a slight stress level of 0.17 N across 50 kohm resistor for the cymbal transducer at the 730 Hz. The resonance frequency of the cymbal was shifted to lower value and the harvesting energy was increased with the pre-stress increased. The analytical results were found to be in good agreement with the experimental results. It is suggested that great potential for cymbal transducers exists in energy harvesting applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

396-401

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Lesieutre, G.K. Ottman, and H.F. Hofmann, J. Sound Vib. 269, 991 (2004).

Google Scholar

[2] H.S. Yoon, G. Washington, and A. Danak, J. Intel. Mat. Syst. Str. 16, 877 (2005).

Google Scholar

[3] T.H. Ng, and W.H. Liao, J. Intel. Mat. Syst. Str.  16, 785 (2005).

Google Scholar

[4] Y.C. Shu, and I.C. Lien, Smart. Mater. Struct. 15, 1499 (2006).

Google Scholar

[5] Y.C. Shu, and I.C. Lien, J. Micromech. Microeng. 16, 2429 (2006).

Google Scholar

[6] Z. Wang, and Y. Xu, Appl. Phys. Lett. 90, 263512 (2007).

Google Scholar

[7] M.S. Majdoub, P. Sharma, and T. Cagin, Phys. Rve. B 78, 121407 (2008).

Google Scholar

[8] C.A. Howells, Energ. Convers. Manage. 50, 1847 (2009).

Google Scholar

[9] F. Cottone, H. Vocca, and L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009).

Google Scholar

[10] S. Roundy and P. Kwright, Smart Mater. Struct. 13, 1131 (2004).

Google Scholar

[11] N. E. duToit, B. L. Wardle, and S.G. Kim, Integr. Ferroelectr. 71, 121 (2005).

Google Scholar

[12] N. M. White, P. Glynne-Jones, and S. P. Beeby, Smart Mater. Struct. 10, 850 (2001).

Google Scholar

[13] H. A. Sodano, G. Park, and D. J. Inman, Strain 40, 49 (2004).

Google Scholar

[14] S. Roundy, P. K. Wright, and J. Rabaey, Comput. Commun. 26, 1131 (2003).

Google Scholar

[15] H.W. Kim, S. Priya, K. Uchino, and R.E. Newnham, J. Electroceram.  15, 27 (2005).

Google Scholar

[16] H.W. Kim, S. Priya, K. Uchino, Jap. J. Appl. Phys. 45, 5836 (2006).

Google Scholar

[17] H.W. Kim, A. Batra, S. Priya, K. Uchino, D. Markley, R.E. Newnham, and H.F. Hofmann, Jap. J. Appl. Phys. 43, 6178 (2004).

DOI: 10.1143/jjap.43.6178

Google Scholar

[18] R.E. Newnham, A. Dogan, Q. C. Xu, K. Onitsuka, J. Tressler, and S. Yoshikawa, Ultrasonics Symposium, p.509 (1993).

DOI: 10.1109/ultsym.1993.339557

Google Scholar

[19] P. Ochoa, M. Villegas, J. L. Pons, P. Leidinger, and J. F. Fernandez, J. Electroceram. 14, 221 (2005).

Google Scholar

[20] C.L. Sun, S.S. Guo, W.P. Li, Z.B. Xing, G.C. Liu, X.Z. Zhao, Sensor Actuat A-Phys, 121, 213(2005).

Google Scholar

[21] J. F. Tressler, A. Dogan, J. F. Fernandez, J. T. Fielding, K. Uchino, and R.E. Newnham, IEEE-UFFC Ultrason. Symp. Proc., Seattle, WA, 897 (1995).

Google Scholar