Relaxation Behavior of Zr Substituted CaCu3Ti4O12 Ceramics

Article Preview

Abstract:

The dielectric properties of Zr substituted CaCu3Ti4O12 ceramics have been investigated in detail. Grain size decreases with Zr content increasing. The hetero-electrical microstructures of prepared samples have been confirmed by the impedance spectra. The dielectric loss has been improved by Zr doping because of the enhancement of grain boundary resistivity. A Debye-like boundary relaxation behavior has been observed in the temperature range of 220-600K. As Zr content increases, the relaxation time increases due to the higher grain boundary concentration. This work has provided an additional proof for the origin of giant dielectric response in CaCu3Ti4O12 ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

375-379

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Subramanian, D. Li, N. Duan, B.A. Resiner, and A.W. Sleight:J. Solid State Chem. Vol. 151(2000), p.323.

Google Scholar

[2] C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, and A.P. Ramirez, Science Vol. 293(2001), p.673.

Google Scholar

[3] S.M. Ke, H.T. Huang, and H.Q. Fan, Appl. Phys. Lett. Vol. 89(2006), p.182904.

Google Scholar

[4] H.T. Yu, H.X. Liu, H. Hao, L.L. Guo, C.J. Jin, Z.Y. Yu, and M.H. Cao, Appl. Phys. Lett. Vol. 91( 2007), p.222911.

Google Scholar

[5] S.Y. Chung, I.D. Kim, and S.J.L. Kang, Nature Mater. Vol. 3(2004), p.1.

Google Scholar

[6] M.H. Cohen, J.B. Neaton, L.X. He, and D. Vanderbilt, J. Appl. Phys. Vol. 94(2003), p.3299.

Google Scholar

[7] P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, and A. Loidl, Phys. Rev. B Vol. 70(2004), p.172102.

Google Scholar

[8] D.C. Sinclair, T.B. Adams, F.D. Morrison and A.R. West, Appl. Phys. Lett. Vol. 80(2002), p.2153.

Google Scholar

[9] T.B. Adams, D. C Sinclair and A.R. West, Adv. Mater. Vol. 14(2002), p.1321.

Google Scholar

[10] W. Li, R.W. Schwartz, A.P. Chen, and J.S. Zhu, Appl. Phys. Lett. Vol. 92(2007), p.112901.

Google Scholar

[11] R.K. Grubbs, E.L. Venturini, P.G. Clem, J.J. Richardson, B.A. Tuttle, and G.A. Samara, Phys. Rew. B Vol. 72(2005), p.104111.

Google Scholar

[12] E.A. Patterson, S. Kwon, C.C. Huang, and P. Cann, Appl. Phys. Lett. Vol. 87(2005), p.182911.

Google Scholar

[13] T.T. Fang, and H.K. Shiau, J. Am. Ceram. Soc. Vol. 87(2004), p. (2072).

Google Scholar

[14] G.H. Cao, L.X. Feng, and C. Wang, J. Phys. D: Appl. Phys. Vol. 40(2007), p.2899.

Google Scholar

[15] T.T. Fang, and C.P. Liu, Chem. Mater. Vol. 17(2005), p.5167.

Google Scholar

[16] K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc. Vol. 72(1989), p.1555.

Google Scholar

[17] D.C. Sinclair, and A.R. West, J. Appl. Phys. Vol. 66(1989), p.3850.

Google Scholar

[18] Y.Y. Yan, L. Jin, L.X. Feng, and G.H. Cao, Mater. Sci. and Eng. B Vol. 130(2006), p.146.

Google Scholar