The Effect of Vacancy on the Phase Stability of TiNi Shape Memory Alloy from First-Principle Calculation

Article Preview

Abstract:

The effect of vacancy on the phase stability of TiNi shape memory alloy has been investigated by the first-principle method based on the density functional theory with generalized gradient approximation. The formation energy, formation heat, formation enthalpy per atom and density of states (DOS) of TiNi alloy with and without vacancy are calculated. The results indicate that the favorable point defect is Ni vacancy in both B2 and B19’ phases of TiNi alloy. The existence of vacancy increases the formation enthalpies per atom difference and thus decreases the phase stability. The DOS values at Fermi level of martensitic phases are lower than that of austenite phases in both perfect TiNi and TiNi with Ni vacancy, indicating the natural transformation from austenite to martensite upon cooling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

528-532

Citation:

Online since:

June 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.C. Zhao, W. Cai and Y. F. Zheng: The shape memory effect and superelasticity of alloys (National Defence Industrial Press, Beijing 2002).

Google Scholar

[2] Hiroyasu Funakubo: Shape memory alloys (China Machine Press, Beijing 1992).

Google Scholar

[3] R. Zengin: Thermochimica Acta. Vol. 503-504(2010), p.61.

Google Scholar

[4] X. T. Zu, S.B. Li, X.F. Dong et. al: Nuclear Power Engineering, Vol. 21, No. 6 (2000), p.547.

Google Scholar

[5] Z.G. Wang, X.T. Zu, X. D. Feng et. al: Nuclear Instrument and Methods in Phy. Rev. B 211(2003), p.239.

Google Scholar

[6] T. B. Massalski: ASM International, Materials Park. Vol. 3 (1990), p.2874.

Google Scholar

[7] G. Kresse and J. Furthmuller: Phys. Rev. B 54(1996), p.11169.

Google Scholar

[8] D. Vanderbilt: Phys. Rev. B 41(1990), p.7892.

Google Scholar

[9] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais: Phys. Rev. B 46(1992), p.6671.

DOI: 10.1103/physrevb.46.6671

Google Scholar

[10] H. J. Monkhorst and J. D. Pack: Phys. Rev. B 13(1976), p.5188.

Google Scholar

[11] Y. Y. Ye, C. T. Chan, and K. M. Ho: Phys. Rev. B 56(1997), p.3678.

Google Scholar

[12] X. Y. Huang, G. J. Ackland, and K. M. Rabe: Nat. Mater. Vol. 2 (2003), p.307.

Google Scholar

[13] R. J Wasilewski, S. R. Butler, J. E. Hanlon, D. Worden: Metall. Trans. Vol. 2 (1971), p.229.

Google Scholar

[14] R. Würschum, K. Badura-Gergen, E.A. Kümmerle et. al: Phy. Rev. B. 54(1996), p.849.

Google Scholar

[15] J.M. Lu, Q.M. Hu, L. Wang, Y.J. Li, D.S. Xu and R. Yang: Phys. Rev. B 75(2007), p.0941108.

Google Scholar