Facile Controlled Synthesis of Manganese Oxide Hierarchical Microspheres by Hydrothermal Method

Article Preview

Abstract:

MnO2 hierarchical microsphere has been synthesized by a facile and direct hydrothermal reaction between KMnO4 and HCl without the aids of catalysts, surfactants or templates. The as-prepared microsphere, as characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) analysis and nitrogen adsorption and desorption, is in form of K0.27MnO2 (H2O )0.54, with a flower-like hierarchical microsphere structure and a BET surface area value of 52 m2/g. The morphology of the product can be simply tailed by controlled by reaction temperature or period and crystallinity can be modified by changing the concentrate of KMnO4. In general, excessive KMnO4 and low hydrothermal temperature are favor to forming flower-like hierarchical structure. Besides, the formation mechanisms of the hierarchical schemes are proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-115

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Xiaoxu Li, Yujie Xiong, Zhengquan Li and Yi Xie. Inorg. Chem. Vol. 45 (2006), p.3493.

Google Scholar

[2] H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu. Adv. Funct. Mater. Vol. 17 (2007), p.2766.

Google Scholar

[3] Deshan Zheng, Zhilei Yin, Weimin Zhang, Xuejie Tan, and Sixiu Sun. Cryst. Growth Des. Vol. 6 (2006), p.1733.

Google Scholar

[4] YunShuang Ding, XiongFei Shen, Sinue Gomez, Hong Luo, Mark Aindow and Steven L. Suib. Adv. Funct. Mater. Vol. 16 (2006), p.549.

Google Scholar

[5] S. Bach, J. P. Pereira-ramoss, N. Baffier and R. Messina. Electrochim. Acta. Vol. 36 (1991), p.1595.

Google Scholar

[6] P. Strobl, J. Durr, M. -H. Tuilier and J. C. Charenton. J. Mater. Chem. Vol. 3 (1993), p.453.

Google Scholar

[7] Q. Feng, K. Yanagisawa, N. Yamasaki. Journal of Materals Science Letters. Vol. 16 (1997), p.110.

Google Scholar

[8] David Portehault, Sophie Cassaignon, Emmanuel Baudrin and Jean-Pierre Jolivet. Chem. Mater. Vol. 20 (2008), p.6140.

Google Scholar

[9] Moreo, S. Yunoki, E. Dagotto. Science. Vol. 283 (1999), p. (2034).

Google Scholar

[10] C.N.R. Rao, A.K. Cheetham, R. Mahesh. Chem. Mater. Vol. 8 (1996) p.2421.

Google Scholar

[11] Prieto, O., Arco, M. D. and Rives, V. J. Mater. Sci. Vol. 38 (2003), p.2815.

Google Scholar

[12] Yagi, H., Ichikawa, T., Hirano, A., Imanishi, N., Ogawa, S. and Takeda,Y. Solid State Ionics. Vol. 154-155 (2002), p.273.

Google Scholar

[13] Subramanian, V., Zhu, H., Vajtai, R., Ajayan, P. M., Wei, B. J. Phys. Chem. B. Vol. 109 (2005), p.20207.

Google Scholar

[14] Shen, Y. F., Zerger, R. P., DeGuzman, R. N., Suib, S. L., McCurdy,L., Potter, D. I., O'Young, C. -L. Science Vol. 260 (1993), p.511.

Google Scholar

[15] Jikang Yuan, Kate Laubernds, Qiuhua Zhang, Steven L. Suib J. Am. Chem. Soc. Vol. 125 (2003), p.4966.

Google Scholar

[16] Zhao J Z, Tao Z L, Liang J and Chen J. Cryst. Growth Des. Vol. 8 (2008), p.2799.

Google Scholar

[17] Fei J B, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q and Li J B. Adv. Mater. Vol. 20 (2008), p.452.

Google Scholar

[18] Wang N, Gao Y, Gong J, Ma X Y, Zhang X L, Guo Y H and Qu L Y. Eur. J. Inorg. Chem. Vol. 24 (2008), p.3827.

Google Scholar

[19] Xiaobo Fu, Jiyun Feng, Huan Wang and Ka Ming Ng. Nanotechnology. Vol. 20 (2009), p.375601.

Google Scholar

[20] Maowen Xu, Lingbin Kong, Wenjia Zhou, and Hulin Li. J. Phys. Chem. C. Vol. 111 (2007), p.19141.

Google Scholar

[21] Li Z Q, Ding Y, Xiong Y J, Yang Q and Xie Y. Chem. Commun. Vol. 7 (2005), p.918.

Google Scholar

[22] Li B X, Rong G X, Xie Y, Huang L F and Feng C Q. Inorg. Chem. Vol. 45 (2006), p.6404.

Google Scholar

[23] Xu M, Kong L, ZhouW and Li H. J. Phys. Chem. C. Vol. 111 (2007), p.19141.

Google Scholar

[24] Yange Zhang, Liyong Chen, Zhi Zheng, Fengling Yang. Solid State Sciences. Vol. 11 (2009), p.1265.

Google Scholar

[25] David Portehault, Sophie Cassaignon, Nadine Nassif, Emmanuel Baudrin, and Jean-Pierre Jolivet. Angew. Chem. Int. Ed. Vol. 47 (2008), p.6441.

DOI: 10.1002/anie.200800331

Google Scholar

[26] D. Yan, P. X Yan, G. H Yue, J. Z Liu, J. B Chang, Q Yang, D. M Qu, Z. R Geng, J. T Chen, G. A Zhang, R. F Zhuo. Chem. Phys. Lett. Vol. 440 (2007), p.134.

Google Scholar

[27] V. Subramanian, Hongwei Zhu, Robert Vajtai, P. M. Ajayan, and Bingqing Wei, J. Phys. Chem. B. Vol. 109 (2005), p.20207.

Google Scholar

[28] Jianzhi Zhao, Zhanliang Tao, Jing Liang, and Jun Chen. Cryst. Growth Des. Vol. 8 (2008), p.2799.

Google Scholar

[29] Huang X K, Lv D P, Yue H J, Attia A and Yang Y. Nanotechnology. Vol. 19 (2008), p.225606.

Google Scholar