Synthesis of Fe3O4 Nanocrystals and Application in Photocatalytic Degradation of Levofloxacin Lactate

Article Preview

Abstract:

Fe3O4 nanocrystals were synthesized with polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) as dispersant respectively by solvothermal process. The nanocrystals were characterized in order to elucidate the morphology and structure by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) respectively. The results indicated that Fe3O4 nanocrystals were cubic phases, and the morphologies of samples were globular nanoparticles structure no matter what dispersant was. The photocatalytic degradation of levofloxacin lactate (LVFX) revealed that Fe3O4 nanocrystals promoted the degradation of LVFX. As the UV radiation time was only 30 min, the photocatalytic degradation percentage of LVFX with Fe3O4 (magnetite) as catalyst was about 92%. However, the direct photolysis degradation percentage of LVFX without Fe3O4 is about 85%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

376-382

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] ] O.A. Jones, J.N. Lester and N. Voulvoulis: Trends Biotechnol. Vol. 23 (2005), p.163.

Google Scholar

[2] ] D.W. Kolpin, E.T. Furlong and M.T. Meyer: Environ. Sci. Technol. Vol. 36 (2002), p.1202.

Google Scholar

[3] ] S.D. Kim, J. Cho, In.S. Kim, Brett J. Vanderford and Shane A. Snyder: Water Res. Vol. 41 (2007), p.1013.

Google Scholar

[4] ] G. Hamscher, S. Sczesny, H. Hoper and H. Nau: Anal. Chem. Vol. 74 (2002), p.1509.

Google Scholar

[5] ] P.I. Boon, M. Cattanach: Lett. Appl. Microbiol. Vol. 28 (1999), p.164.

Google Scholar

[6] ] J. Jeong, W.H. Song, William J. Cooper, J.Y. Jung and John Greaves: Chemosphere Vol. 78 (2010), p.533.

Google Scholar

[7] ] Y.H. Zheng, Y. Cheng, F. Bao and Y.S. Wang: Mater. Res. Bull. Vol. 41 (2006), p.525.

Google Scholar

[8] ] Y.J. Suh, H.D. Jang, H.K. Chang, D.W. Hwang and H.C. Kim: Mater. Res. Bull. Vol. 40 (2005), p.2100.

Google Scholar

[9] ] F. Sayılkan, S. Erdemoglu, M. Asilturk, M. Akarsu, S. Sener, H. Sayılkan, M. Erdemoglu and E. Arpac: Mater. Res. Bull. Vol. 41 (2006), p.2276.

Google Scholar

[10] ] F.B. Li, X.Z. Li, X.M. Li, T.X. Liu and J. Dong: J. Colloid Interface Sci. Vol. 311 (2007), p.481.

Google Scholar

[11] ] F.B. Li, X.Z. Li, C.S. Liu, X.M. Li and T.X. Liu: Ind. Eng. Chem. Res. Vol. 46 (2007), p.781.

Google Scholar

[12] ] X. Wang, C. Liu, X. Li, F. Li and S. Zhou: J. Hazard. Mater. Vol. 153 (2008), p.426.

Google Scholar

[13] ] M. Fofana, M.S. Kuma: Miner. Met. Rev. Vol. 38 (1997), p.35.

Google Scholar

[14] ] K. Nakatsuka, B. Jeyadevan, S. Neveu and H. Koganezawa: J. Magn. Magn. Mater. Vol. 252 (2002), p.360.

Google Scholar

[15] ] Y.B. Khollam, S.R. Dhage, H.S. Potdar, S. B. Deshpande, P. P. Bakare, S. D. Kulkarni and S. K. Date: Materials Letters Vol. 56 (2002), p.571.

DOI: 10.1016/s0167-577x(02)00554-2

Google Scholar

[16] ] A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt and R. Felix: J. Magn. Magn. Mater. Vol. 194 (1999), p.185.

Google Scholar

[17] ] T.J. Daou, G. Pourroy, S. Be´gin-Colin, J.M. Grene`che, C. Ulhaq-Bouillet, P. Legare´, P. Bernhardt, C. Leuvrey and G. Rogez: Chem. Mater. Vol. 18 (2006), p.4399.

DOI: 10.1021/cm060805r

Google Scholar

[18] ] M. Ma, Y. Zhang, W. Yu, Hao-ying Shen, Hai-qian Zhang and Ning Gu: Colloid Surf. A: Physicochem. Eng. Aspects. Vol. 212 (2003), p.219.

Google Scholar

[19] ] F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C. Y. Tsai, C.L. Wu, M.T. Wu and D.B. Shieh: Biomaterials. Vol. 26 (2005), p.729.

Google Scholar

[20] ] Y. Zhang, S.N. Wang, Song Ma, J.J. Guan, D. Li, X.D. Zhang and Z.D. Zhang: J. Biomed. Mater. Res. Part A. Vol. 85 (2008), p.840.

Google Scholar

[21] ] H. Deng, X.L. Li, Q. Peng, X. Wang, J.P. Chen and Yadong Li: Angew. Chem. Int. Ed. Vol. 44 (2005), p.2782.

Google Scholar

[22] ] P. Mazellier, A. Rachel and V. Mambo: J. Photochem. Photobiol. A: Chem. Vol. 163 (2004), p.389.

Google Scholar

[23] ] A. Safarzadeh-Amiri, J.R. Bolton and S. Cater: Water Res. Vol. 31 (1997): p.787.

Google Scholar

[24] ] M.I. Franch, J.A. Ayllo' n, J. Peral and X. Dome' nech: Appl. Catal. B: Environ. Vol. 50 (2004), p.89.

Google Scholar

[25] ] E.M. Rodrıguez, B. Nunez, G. Fernandez and F.J. Beltran: Appl. Catal. B: Environ. Vol. 89 (2009), p.214.

Google Scholar

[26] ] M.A. Blesa, P.J. Morando, A.E. Regazzoni, in: Chemical Dissolution of Metal Oxides, edited by CRC Press Publisher, Boca Raton, FL (1994).

Google Scholar

[27] ] R.M. Cornell, U. Schwertmann, in: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd Ed., edited by Wiley-VCH Verlag GmbH & Co. KGaA Publishers, Weinheim (2003).

Google Scholar

[28] ] Eva Rodrı'guez, Guadalupe Ferna'ndez, Beatriz Ledesma, Pedro A'lvarez, Fernando J. Beltra'n: Appl. Catal. B: Environ. Vol. 92(2009), p.240.

Google Scholar

[17] R. C. O'Handley: Modern Magnetic Materials-Principles and Applications (John Wiley & Sons, Inc. 1999). (编号错误, 请核对后改正).

Google Scholar