Microstructure and Magnetic Properties of the CoPtRu-SiO2 Single and CoPtRu-SiO2/Co72Pt28-SiO2 Double Layer Nanocomposite Films

Article Preview

Abstract:

In this work, the CoPtRu nanocomposite films with were fabricated on the Ru seed layer. The effects of Ru content on the microstructure and magnetic properties of the CoPtRu-SiO2 single layer nanocomposite films, and magnetic properties of the CoPtRu-SiO2/Co72Pt28-SiO2 double layer nanocomposite films were studied. Results showed that with an increase of Ru content in the CoPtRu film, the ordering degree of hcp-CoPtRu decreased, the volume of soft magnetic fcc phase increased, both the anisotropy constant and the saturation magnetization of the CoPtRu film decreased greatly. As a result, the anisotropy field of the film did not decrease notably. Therefore, the coercivity of the CoPtRu-SiO2/Co72Pt28-SiO2 double layer film was very close to that of Co72Pt28-SiO2 single layer film at both room temperature and low temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

358-363

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. D. Bader: Rev. Mod. Phys. Vol. 78 (2006), p.1.

Google Scholar

[2] D. Weller, H. Brindle, G. Gorman, C. -J. Lin and H. Notarys: Appl. Phys. Lett. Vol. 61 (1992) , p.2726.

Google Scholar

[3] C. -J. Lin and G.L. Gorman: Appl. Phys. Lett. Vol. 61 (1992), p.1600.

Google Scholar

[4] H. Uwazumi, K. Enomoto, Y. Sakai, S. Takenoiri, T. Oikawa and S. Watanabe: IEEE Trans. Magn. Vol. 39 (2003), p. (1914).

DOI: 10.1109/tmag.2003.813778

Google Scholar

[5] K. K. M. Pandey, J. S. Chen and G. M. Chow: J. Appl. Phys. Vol. 100 (2006), p.054909.

Google Scholar

[6] K. K. M. Pandey, J. S. Chen, B. C. Lim and G. M. Chow: J. Appl. Phys. Vol. 104 (2008), p.073904.

Google Scholar

[7] R.J. Tang, P. Ho and B. C. Lim: Thin Solid Films. Vol. 518 (2010), p.5813.

Google Scholar

[8] Y. Takeda, T. Umezawa, K. Chiba, H. Shoji and M. Takahashi: J. Magn. Magn. Mater. Vol. 152 (1996), p.243.

Google Scholar

[9] H. Sato, T. Shimatsu, Y. Kitakami, S. Okamoto, H. Aoi, Muraoka and Y. Nakamura: IEEE Trans. Magn. Vol. 43 (2007), p.2106.

DOI: 10.1109/tmag.2007.893126

Google Scholar

[10] B. Liu, D. Weller, A. Sunder, G. Ju, X. Wu, R. Brockie, T. Nolan, C. Brucker and R. Ranjan: J. Appl. Phys. Vol. 93 (2003), p.6751.

DOI: 10.1063/1.1557715

Google Scholar

[11] H. S. Jung, U. Kwon, M. Kuo, E. M. T. Velu, S. S. Malhotra, W. Jiang and G. Bertero: IEEE Trans. Magn. Vol. 43 (2007), p.615.

Google Scholar

[12] T. Chen, G. B. Charlan and T. Yamashita: J. Appl. Phys. Vol. 54 (1983), p.5103.

Google Scholar

[13] K. Renee Horton, S. Kang and J. W. Harrell: AIP conf. proc. Vol. 1119 (2009), p.217.

Google Scholar

[14] D. Suess: Appl. Phys. Lett. Vol. 89 (2006), p.113105.

Google Scholar

[15] G. T. Zimanyi: J. Appl. Phys. Vol. 103 (2008), p. 07F543.

Google Scholar

[16] R. H. Victora and X. Shen: IEEE Trans. Magn. Vol. 41 (2005), p.537.

Google Scholar

[17] R. C. O'Handley: Modern Magnetic Materials-Principles and Applications (John Wiley & Sons, Inc. 1999).

Google Scholar