A Facile Preparation of Carbon-Supported Nanoscale Zero-Valent Iron Fibers

Article Preview

Abstract:

In this paper, ferric alginate fibers was prepared by wet spinning of sodium alginate into a coagulating bath containing ferric chloride. The carbon-supported nanoscale zero-valent iron fibers (CSNZVIF) were obtained through thermal degradation of ferric alginate fiber at 900°Cunder N2 atmosphere. The product was characterized by field emission scanning electron microscopy (FESEM), X-ray power diffractometer (XRD), and Brunauer-Emmett-Teller (BET) surface area. It was found that zerovalent iron particles were well dispersed in the amorphous carbon fibers. CSNZVIF has high surface areas of 352 m2/g. The existence of carboxylic group and hydroxyl group in ferric alginate structure unit plays key role in the formation of carbon-supported nanoscale zero-valent iron fibers. Fe3+ was reduced to Fe0 by hydroxyl group and as-formed amorphous carbon during heating under N2. This thermal degradation and self-reduction reaction of ferric alginate fiber is potentially scalable to large production and continuous processing for preparing CSNZVIF.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

349-352

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Liu, S. A. Majetich, R. D. Tilton, D. S. Scholl and G. V. Lowry, Environ. Sci. Technol., 2005, 39, 1338.

Google Scholar

[2] S. M. Ponder, J. G. Darab and T. E. Mallouk, Environ. Sci. Technol, 2000, 34, 2564.

Google Scholar

[3] P. Dowideit, C. von Sonntag, Environ. Sci. Technol., 1998, 32, 1112.

Google Scholar

[4] M. Cowell, T. Kibbey, J. Zimmerman and K. Hayes, Environ. Sci. Technol., 2000, 34, 1583.

Google Scholar

[5] M. Nutt, J. Hughes and M. Wong, Environ. Sci. Technol., 2005, 39, 1346.

Google Scholar

[6] L. Matheson, P. Tratnyek, Environ. Sci. Technol., 1994, 28, (2045).

Google Scholar

[7] W. Orth, R. Gillham, Environ. Sci. Technol., 1996, 30, 66.

Google Scholar

[8] J. Fennelly, A. Roberts, Environ. Sci. Technol., 1998, 32, (1980).

Google Scholar

[9] C. B. Wang, W.X. Zhang, Environ. Sci. Technol., 1997, 31, 2154.

Google Scholar

[10] Y. Wang, J. H. Qu and H. J. Liu, Chinese Chemical Letters, 2006, 17(1), 61.

Google Scholar

[11] L. B. Hoch, E. J. Mack, B. W. Hydutsky, J. M. Hershman, J. M. Skluzacek and T. E. Mallouk, Environ. Sci. Technol., 2008, 42 (7), 2600.

DOI: 10.1021/es702589u

Google Scholar

[12] H.H. Tseng, M. -Y. Wey, Y. S. Liang and K. H. Chen, Carbon, 2003, 41, 1079.

Google Scholar

[13] C. Y. Lu, M.Y. Wey and L. I. Chen, Applied Catalysis A: General, 2007, 325, 163.

Google Scholar

[14] S. Y Gao, Y.G. Shi, S. X. Zhang, K. Jiang, S. X. Yang, Z. D. Li and E. Takayama-Muromachi, J. Phys. Chem. C, 2008, 112, 10398.

Google Scholar