Relationship between the Bandgap and Electrochemical Behavior on TiO2 Nanoparticles Prepared Sonochemically

Article Preview

Abstract:

Nanocristalline TiO2 obtained by a facile and environment-friendly sonochemical method was subjected to thermal treatment in the temperature range of 400-900 °C in order to produce variable anatase-rutile phases ratio. The relationship between the optical bandgap and the electrochemical behavior was studied. All the stages of phase transformation of the as-prepared sample such as: nucleation, growth and coarsening were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that phase transformation mechanism stems from the redistribution of energy in the system and a critical particle size. On the other hand, the samples were characterized by UV-vis spectroscopy for the bandgap studies. The optical band gap of as-prepared sample increases to 3.31 eV with respect to 3.20 eV for bulk-anatase. This expansion could be attributed to quantum size effect. The i-E characteristics of samples with variable anatase-rutile ratio were obtained using cyclic voltammetry technique in a 0.5 M H2SO4 solution at room temperature. The foremost charge magnitude was obtained when anatase had a critical size of 17 nm. Analyzing both particle size for anatase and rutile, we observed that when rutile is the dominating phase and its size difference larger in 35% than anatase, the current reaches its minimum values. Based on electrochemical results, the optimal particle size and content phases control are important in order to obtain an increase in the electrochemical performance in the Hydrogen Evolution Reaction (HER) zone

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ji-Guang Li, Hiroshi Kamiyama, Xiao-Hui Wang, Yusuke Moriyoshi and Takamasa Ishigaki: JECS Vol. 26 (2006), p.423.

Google Scholar

[2] D.F. Ollis, E. Pellizzete and N. Serpone: Environ. Sci. Technol. Vol. 25 (1991), p.1522.

Google Scholar

[3] W. Li, C. Ni, H. Lin, C. P. Huang and S. Ismat Shat: J. Appl. Phys. Vol. 96 (2004), p.6663.

Google Scholar

[4] Yin Li, Suo Hon Lim and Tim White: International Journal of Nanoscience Vol. 3 (2004), p.749.

Google Scholar

[5] Xiaobo Chen and Samuel S. Mao: Chem. Rev. Vol. 107 (2007), p.2891.

Google Scholar

[6] J. Ovenstone and K. Yanagisawa: Chem. Mater. Vol. 11 (1999), p.2770.

Google Scholar

[7] Hamed Arami, Mahyar Mazloumi, Razieh Khalifehzadeh and S.K. Sadrnezhaad: Materials Letters Vol. 61 (2007), p.4559.

DOI: 10.1016/j.matlet.2007.02.051

Google Scholar

[8] Yang Liu, Yan Li, YuntaoWang, Lei Xie, Jie Zheng and Xingguo Li: Journal of Hazardous Materials Vol. 150 (2008), p.153.

Google Scholar

[9] Kenneth S. Suslick, Millan M. Mdleleni and Jeffrey T. Ries: J. Am. Chem. Soc. Vol. 11 (1997), p.99303.

Google Scholar

[10] Neppiras, E. A. and Noltingk, B. E: Proc. Phys. Soc. Vol. B64 (1951), p.1032.

Google Scholar

[11] Kenneth S. Suslick: Science Vol. 247 (1990), p.1439.

Google Scholar

[12] Cullity, B. D, Stock, S. R., Elements of X-Ray Diffraction. Prentice Hall, New Jersey, (2001).

Google Scholar

[13] Spurr, R.A. and Myers, H: Anal. Chem. Res. Vol. 29 (1957), p.760.

Google Scholar

[14] Leonardo González-Reyes, I. Hernández-Pérez, Francisco C. Robles Hernández, Hector Dorantes Rosales and Elsa M. Arce-Estrada: JECS Vol. 281 (2008), p.585.

Google Scholar

[15] Leonardo González-Reyes, I. Hernández-Pérez, Francisco C. Robles Hernández Hector Dorantes Rosales and Elsa M. Arce-Estrada: Supplemental Proceedings: Vol.I. Materials Processing and Properties TMS (2008), p.497.

Google Scholar

[16] Leonardo González-Reyes, I. Hernández-Pérez, Francisco C. Robles Hernández Hector Dorantes Rosales and Elsa M. Arce-Estrada: Supplemental Proceedings: Vol. I: Materials Processing and Properties TMS (2008), p.129.

Google Scholar

[17] Henry wise and Jacques Oudar., Materials concepts in surface reactivity and catalysis. Dover Publications, Inc. New York. 2001. pp.64-78.

Google Scholar

[18] Y. Wang, N. Herron.; J. Phys. Chem. 1991, 95, 525-523.

Google Scholar

[19] K. Madhusudan Reddy, Sunkara V. Manorama, A. Ramachandra Reddy.; Materials Chemistry and Physics 2002, 78, 239-245.

DOI: 10.1016/s0254-0584(02)00343-7

Google Scholar

[20] Robert S. Weber.; Journal of Catalisis 1995, 151, 470-474.

Google Scholar

[21] W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou.; Appl. Catal. 2007, B69, 138-144.

Google Scholar

[22] Wilfried Wunderlich, Lei Miao, Masaki Tanemura, Sakae Tanemura, Ping Jin, Kenji Kaneko, Asuka Terei, Nataliya Nabotova-Gabin, Rachid Belkada.; International Journal of Nanoscience 2004, 3, 439- 445.

DOI: 10.1142/s0219581x04002231

Google Scholar

[23] Th. Dittrich.; Phys. Stat. Sol. 2000, 182, 447-455.

Google Scholar

[24] Manzo-Robledo, A.; Levy-Clement, C.; Alonso-Vante, N.; Langmuir 2007, 23, 1413-11416.

Google Scholar

[25] A. Manzo-Robledo. Ph. D Thesis. Poitiers University, France. (2004).

Google Scholar

[26] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell.; JPCS, 2003, 64, 1069-1087.

Google Scholar