Synthesis and Annealing Effects on the Structure of Alumina by Polyol Mediated Process

Article Preview

Abstract:

Rare-earth ion (Eu3+ and Tb3+)-doped and undoped aluminum oxide powders have been prepared via polyol mediated synthesis. The precursors were aluminium nitrate, rare-earth (RE: Tb, Eu) nitrate and diethylene glycol. The powders were generated using low-temperature (Tmax ~ 200°C) and reaction time of 150 min. By controlling the acidity of the synthesis solution and the precursor concentration, sub-micrometric aggregates (about 300 nm) with spherical morphology were obtained. The powders of RE-doped Al2O3 were further investigated by photon correlation laser, X-ray diffraction, transmission electron microscope, scanning electron microscope, thermal analysis and photoluminescence emission spectra. The results showed that a-Al2O3 is formed at a temperature significantly lower than the solid sate reaction route. The luminescence of Al2O3 doped with 5 at.% Eu was observed with emission band in 614 nm and Al2O3 doped with 5 at.% Tb showed an emission band in 544 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-48

Citation:

Online since:

June 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.S. Nordahl, G.L. Messing, J. Eur. Ceram. Soc. 22 (2002) p.415–422.

Google Scholar

[2] P. Bowen, C. Carry, D. Luxembourg, H. Hofmann, 157 (2005) p.100–107.

Google Scholar

[3] S.P. Feofilov, A.A. Kaplyanskii, A.B. Kulinkin, A.B. Kutsenko, T.N. Vasilevskaya, R.I. Zakharchenya, J. Sol–Gel Sci. Technol. 21 (2001) pp.135-145.

DOI: 10.1023/a:1011261431938

Google Scholar

[4] A. Odaka, T. Yamaguchi, T. Fujita, S. Taruta and K. Kitajima, Powder Technol. 193 (2009) pp.26-31.

Google Scholar

[5] D.K. Williams, B. Bihari, B.M. Tissue, J.M. McHale, J. Phys. Chem. B 102 (1998) pp.916-920.

Google Scholar

[6] P.G. Kik and A. Polman, J. Appl. Phys. 93 (2003) pp.5008-5012.

Google Scholar

[7] N.E. Bell, S.B. Cho, J.H. Adair, J. Am. Ceram. Soc. 81 (1998) 1411-1420.

Google Scholar

[8] P. K. Sharma, V. V. Varadan and V. K. Varadan, J. Eur. Ceram. Soc. 23-5 (2003) pp.659-666.

Google Scholar

[9] A. Odaka, T. Yamaguchi, T. Fujita, S. Taruta, K. Kitajima, J. Eur. Ceram. Soc. 28 (2008) pp.2479-2485.

Google Scholar

[10] T. Yang, H. Wang, M.K. Lei, Mater. Chem. Phys. 95 (2006) pp.211-217.

Google Scholar

[11] J.G. Li and X. Sun, Acta Mater. 48 (2000) pp.3103-3112.

Google Scholar

[12] I. Ganesh, P.M.C. Torres, J.M.F. Ferreira, Ceram. Int. 35 (2009) pp.1173-1179.

Google Scholar

[13] G. Hirata, N. Perea, M. Tejeda, J.A. Gonzalez-Ortega, J. McKittrick, Opt. Mater. 27 (2005) pp.1311-1315.

DOI: 10.1016/j.optmat.2004.11.029

Google Scholar

[14] M. A. Flores-Gonzalez, C. Louis, R. Bazzi, G. Ledoux, K. Lebbou, P. Perriat, O. Tillement. App. Phys. A-Mater. 81-87 (2005) pp.1385-1391.

DOI: 10.1007/s00339-005-3215-3

Google Scholar

[15] M. Bodaghi, H. Zolfonoon, M. Tahriri, M. Karimi, Solid State Sci. 11 (2009) pp.496-500.

DOI: 10.1016/j.solidstatesciences.2008.06.021

Google Scholar